




e Complete Guide to Perspective Drawing

Computers can calculate perspective angles and create a drawing for us, but

the spontaneity of mark-making, the tactile quality of a writing surface, the

weight of a drawing instrument, and the immediacy of the human tou are

sensations that keep traditional drawing skills perpetually relevant. e

sensuality and convenience of the hand persists and will survive as a

valuable communication tool, as will the need to accurately express your

ideas on paper. As a professional, understanding the foundations of drawing,

how we process images, and how we interpret what we see are principal

skills. Understanding linear perspective enables artists to communicate their

ideas accurately on paper. The Complete Guide to Perspective Drawing offers

a step-by-step guide for the beginner as well as the advanced student on

how to draw in one-point through six-point perspective and how to make

scientifically accurate conceptual illustrations from simple to complex

situations.
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“is is the comprehensive book on how to see and utilize perspective that educators

and serious students of the subject have been waiting for! It covers every aspect of the

perspective problems creative artists might encounter, providing multiple solutions

and concise explanations illustrated with hundreds of easily read drawings. e

reader is connected to the historical baground of perspective in art and science,

taught how to transfer what is seen or imagined into two dimensions, and delivered a

source of reference that will endure for decades.”

—F. Scott Hess, artist and Associate Professor of Painting for Laguna College of Art + Design’s
MFA and BFA programs
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Preface

I tried to look relaxed as I sat across from the interviewer—fresh out of my

sophomore year at art sool, hoping to land a summer job doing artwork of

some kind, any kind; I wasn’t piy. e interviewer looked tired. His

questions were delivered with a fatigued voice; a voice that seemed to have

eoed the same question to countless interviewees. “We are looking for

someone who can do perspective drawings. Can you do perspective

drawings?” he asked. It was a straightforward question that solicited a

straightforward answer. I knew any hesitation would belie an affirmative

reply. I had to react quily. My oice was clear: tell the interviewer I was

up to the task, or tell the truth. Knowing the laer reply would end the

interview, and feeling I had nothing to lose, I decided to … well, stretch the

truth. I struggled for the first few years, trying to tea myself the finer

aspects of perspective and not get fired in the process. A decade later I was

still working for the same company, still doing perspective drawings, and

finally feeling secure in my perspective abilities. So mu so that when I was

asked to tea a class in perspective, I was confident that I knew my stuff.

But then came the students’ questions. And with them came the

realization that I was not as knowledgeable about perspective as I had

thought. My students asked allenging questions. Trying to find answers to

these questions in publications and online sources led me nowhere. Sources

that answered elemental perspective concepts were ubiquitous, but— beyond

the basics—information was scarce. Once again, I was on my own figuring it

out.

Perspective theory can be allenging. Having a detailed publication to

refer to is invaluable. At the college where I tea, ArtCenter College of

Design, the students are known for their passion and resolve. I knew a basic

perspective text would not answer their questions—or be up to their

standard. So, I made my own set of handouts. It was only a few pages at

first, covering some of the more complicated aspects, the aspects that would



solicit the greatest number of questions from my students. Writing a book

was the furthest thing from my mind. Whenever a student was having

difficulty applying a procedure, I would create a handout addressing that

subject. e number of handouts grew; the small set of handouts soon

became a sta. Aer fieen years of teaing perspective, I had created

several hundred handouts. When I showed them to a colleague he said,

“ese are not handouts—this is a book!”

Well, it wasn’t really a book, at least not yet. It still took some additional

coaxing from students, and a timely call from Routledge Press, before the

handouts were at last assembled, finalized, and transformed into this

publication: The Complete Guide to Perspective Drawing.

I want to thank all my students for their patience, thirst for knowledge,

and continual appeals for additional handouts. A special thanks to Nancy

Tsai for being so generous with her time, Tanya Preston for sorting out my

prose, my family for tolerating my countless hours staring at a computer

screen, and my dog for intently listening to my ramblings about perspective.



Abbreviations

AUX. HL Auxiliary Horizon Line

AUX. MP Auxiliary Measuring Point

AUX. VP Auxiliary Vanishing Point

CV Center of Vision

EL Eye Level

GL Ground Line

GLMP Ground Line Measuring Point

GLVP Ground Line Vanishing Point

HL Horizon Line

HML Horizontal Measuring Line

LA Light Angle

LAP Le Axis Point

LAVP Light Angle Vanishing Point

LMP Le Measuring Point

LRL Le Reference Line

LRP Le Reference Point

LVP Le Vanishing Point

LSP Le Station Point

ML Measuring Line

MP Measuring Point

PP Picture Plane

RAP Right Axis Point

RMP Right Measuring Point

RP Reference Point



RRL Right Reference Line

RRP Right Reference Point

RSP Right Station Point

RVP Right Vanishing Point

SP Station Point

VAP Vertical Axis Point

VML Vertical Measuring Line

VMP Vertical Measuring Point

VP Vanishing Point

VRL Vertical Reference Line

VRP Vertical Reference Point

VSP Vertical Station Point

VVP Vertical Vanishing Point

XAP x-Axis Point



Introduction

How important is it to learn linear perspective? Computers can calculate

perspective angles and create a drawing for us, so what need is there to learn

it traditionally?

To begin with, pencils and paper are not going away soon. e freedom

and spontaneity of mark-making, the tactile quality of a writing surface and

drawing instrument, and the immediacy and convenience of the human

tou will forever remain seductive. e sensuality of the hand persists and

will survive as a valuable aid to visual communication, as will the need to

place your ideas accurately on paper. Furthermore, knowledge is

empowering. As a professional, understanding the foundations of drawing,

how we process images, and how we interpret what we see are principal

skills. is knowledge transfers directly to your drawings, giving them an air

of confidence. If you understand the geometry of lines you have a powerful

tool to create believable images.

You can avoid learning perspective—but only for a while. ose pesky

drawing problems will continue to surface: the misguided lines, the

trapezoidal buildings, the awkward ellipses, the floating figures, the shapes

that, well, just look “off.” e problems seem endless. You realize it is time to

end your procrastination. It is time to learn perspective. is realization is

typically accompanied by a heavy sigh, for learning perspective can be

overwhelming. Take a deep breath. Give yourself time to let the material

sink in. It takes practice. It also takes an abnormal amount of le-brain

thinking; at least, more than most artists like to do. Approa the material

one problem at a time, from the simple to the complex, step by step. Have a

solid understanding of the basics before you progress to the advanced.

I have tried to strike a balance between showing and explaining, so the

descriptions and the images work together. Some readers connect with

wrien descriptions, others (like me) connect with images. Both are needed

to some extent. Describing the diagrams in prose is oen a difficult task. I



have tried to avoid describing the obvious; unnecessary wordiness aributes

to confusion and tedium. In some cases, the reader may not need the

descriptions at all—the drawings may tell the story.

Start at the beginning of this book, as the information builds on previous

apters. Without the foundations supplied in the earlier sections, the rest of

the book may be perplexing. ere are step-by-step guides for ea

drawing. e instructional illustrations use basic geometric shapes as

placeholders for real world objects. Depending on its proportion and scale, a

cuboid can represent a building, a car, or a person. All objects can be

reduced to simple geometric forms. You may wish to use colored pencils to

color-code the procedures. Practice by using the worksheets (available as a

download from the Routledge website). As you advance through the book it

may be helpful to review previous sections. is will ensure you don’t forget

what you have learned. Reviewing the material also assists in gaining a

deeper understanding of the procedures. Keep in mind that there are many

solutions to any given problem. ere is no one correct procedure. ere is,

however, only one correct answer, one correct result—just different ways to

aieve it.

Aer becoming well-versed in perspective theory, you will be able to find

various solutions to any given problem. ese solutions become evident

when you understand the “whys” as well as the “hows.” I want this book to

illustrate how to draw accurately, but also to explain why the procedures

work the way they do. I have aempted to create a book for beginners and

for the advanced. I want to tale the difficult problems as well as the basic

problems, to create (as mu as possible) a complete perspective book. at

being said, it is impossible to include solutions to every scenario. e

purpose of this book is to give you the information needed to extrapolate

from the given samples, and to find a resolution to specific problems not

addressed here. Remember: with knowledge, there is nothing too difficult to

draw.

Tools of the Trade



Here is a list of equipment you will find useful. Perspective drawing requires

precise angles and dimensions. Having the proper tools and understanding

how to use them is important to creating successful images. You will need:

A drawing/draing board. e type with metal edges designed to

accommodate a T-square.

A T-square. A T-square is designed to draw parallel horizontal lines.

45° and 30°/60° triangles. In addition to creating these angles, they are

also used to draw vertical lines.

A protractor. Useful to draw angles other than those drawn by the

triangles.

A ruler. One made out of transparent material is best.

Color pencils. Perspective drawings can become complicated. Color

coding your procedures is a helpful tenique.

A sharpener. Keeping a nice point on your pencils is important.

Tracing paper. Working with overlays is another method to keep

elements in your drawing organized.

A compass. A beam compass is also useful for making circles and

arcs that are too large for a standard compass.

Draing tape. Keep your paper securely fastened to your drawing

board.

An eraser. For that rare occasion when you make a mistake.
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Basic Perspective Terms

A painting is the intersection of a visual pyramid at a given distance with a fixed

center.

—Leon Baista Alberti, On Painting, 1435

is quote is far from the romantic verse commonly used to describe

creative endeavors. Nonetheless, Alberti’s clinical delineation encapsulated a

revolutionary transformation in art production: a revolution based on

science. No longer did artists need to base their images on speculation and

assumption, on convention and estimation. Artists could now depend on

verifiable data. Art and reason became allies.

As perspective’s value became apparent, so did its de requirements.

Perspective procedures can be allenging. e alternative—drawing without

perspective teniques— is merely guesswork. Perspective’s most valued

asset is its ability to portray objects accurately, to assess dimensions, and to

project those dimensions spatially. Perspective produces an uncompromised

image, sometimes a surprising image. Drawing is oen anti-intuitive, and

shapes can appear different than expected. It is not a requirement to plot all

images using perspective guidelines, but by practicing perspective

teniques, a sense of how foreshortened shapes present themselves can be

developed. en, when the artist is sketing from observation or

imagination, the skillset learned from studying perspective becomes a

valuable tool to base their estimations on.

e word perspective derives from the Latin perspirere—to look through.

Alberti’s definition arose from the realization that, when a sheet of glass is

placed between the viewer and the world and then the view is traced, the

perspective is flawless. is vision—as self-evident as it may seem—anged

art production forever. Alberti’s statement is concise but his terms are

abstract, so they will be examined further.



e equation consists of a viewer, a sheet of glass, and an object to be

drawn. e viewer is Alberti’s “fixed center.” It is fixed because the viewer

must remain stationary. A drawing cannot begin from one point of view and

be finished from another, because a different location results in a different

image.

Light makes the world visible. Rays of light reflect from objects and

project onto the retina, converging at the viewer’s eye. is is Alberti’s

“visual pyramid.” e rays “intersect” the sheet of glass (known as the

picture plane). e intersection of these rays on the picture plane creates the

projected image seen—a perfect representation of the world (Figure 1.1).

Figure 1.1 e intersection of the picture plane within Alberti’s “visual pyramid.”

From its inception, perspective was met with resistance. Change is

difficult; artists had been creating images for hundreds of years without

perspective. Painters found this new method of spatial organization difficult,

confusing, and, frankly, unnecessary. But some early converts (one of the

most noted being Masaccio, 1401–1428) embraced the new tenology with

breathtaking results. Others waited, but eventually the popularity of these



new and exciting images forced those holding out to convert. e

procedures were daunting. But to compete as an image maker in this new

world required a new prerequisite: perspective proficiency. Alberti’s

procedures will be explored further in Chapter 15.

Perspective has evolved over several hundred years to the modern

approa used today, based on geometry. e only knowledge the artist

requires for perspective drawing is how to read a ruler, that there are 360° in

a circle, and what an isosceles triangle is (a triangle with two sides of equal

length). Mastering the thirteen books of Euclid’s Elements is not required to

understand perspective.

As the understanding of geometry and its relationship to perspective

evolved, so did the methods. Perspective terms have also anged since 1413.

For example, 600 years ago the term vanishing point did not exist, it was

called a centric point. e language of perspective has evolved—as all

language does—and today the term centric point has vanished. Likewise, the

term distance point was once used for what is now called a measuring point

(MP). Variations in terminology still exist. When perusing publications that

discuss perspective, different terms may be used to describe the same thing.

Basic Terms

To begin, some basic perspective terms will be defined. ese terms are used

throughout the book, so it is important that their meaning and function is

understood.

Station Point (SP)

e station point represents the viewer, specifically the viewer’s eye. A

perspective drawing is created using only one eye. Creating a perspective

drawing using a pair of eyes would result in two slightly different images. A

stereographic (3-D) image is made using two station points. A single image

requires a single station point. It is called a station point because it must

remain stationary (the station point is Alberti’s “fixed center”).



Eye Level (EL)

e eye level is the distance from the ground to the viewer’s eye.

Horizon Line (HL)

e horizon line is the edge of the earth, where ground meets sky.

e edge of the earth is aligned with the viewer’s eye level. Whether

flying in a plane or siing on the ground, the horizon is always at eye level.

Why is this? e following exercise will explain. Stand in front of a piece of

glass, place a small object on the ground, and trace its position on the glass.

en place the object farther away and trace its new position. It is now

higher on the glass (closer to eye level). e farther away an object is, the

higher it will appear on the glass. Objects move up the glass as they move

farther away. At some point, depending on its size, the object will no longer

be able to be seen. Larger objects can be seen from a greater distance and

are thus higher on the glass. ey appear closer to eye level. If something is

very large, and is very far away, it will disappear at eye level. For example,

the edge of the Earth disappears at eye level, at infinity (Figure 1.2).

Figure 1.2 As the dots move farther from the picture plane, they become closer to

the eye level. Objects at infinity, like the horizon line, are depicted at eye level.



Figure 1.3 Albret Dürer, Underweysung, 1525. is eting shows the picture

plane (the frame), the station point (the hook attaed to the wall), and the visual

pyramid (the string attaed to the lute).

Picture Plane (PP)

e picture plane is an imaginary window positioned between the viewer

and the world (Figure 1.2). It is always 90° to the line of sight (the exception

being anamorphic perspective). e orientation and shape of the picture

plane defines the type of perspective. If the picture plane is perpendicular to

the ground, objects are in one- or two-point perspective. If the picture

plane is angled to the ground, objects are in three-point perspective. In

four-, five-, and six-point perspective the picture plane is curved.

Albret Dürer created a perspective maine that demonstrated Alberti’s

theory and how the picture plane, station point, and visual pyramid function

(Figure 1.3). One end of a string was aaed to the wall (fixed center), and

another to the object (in this example, a lute). e string represented the



visual pyramid. Using movable cross hairs fixed to a frame, the intersection

of the string to the picture plane was ploed. e frame represented the

picture plane. When the cross hairs were in position, the string was removed.

e hinged door was closed, and a dot placed where the cross hairs aligned.

e door was then opened, the string was aaed to a different spot on the

lute and the process was begun again. is was not only tedious, but

apparently a two-person job.

Figure 1.4 is illustration shows the relationship between the station point,

picture plane, eye level, horizon line, and vanishing point.

Center of Vision (CV)

e center of vision is where the viewer is looking (also known as the focal

point).

In one- and two-point perspective the line of sight is parallel with the

ground plane, and the center of vision is on the horizon line. In three-point

perspective the line of sight is angled to the ground plane and the center of

vision is above or below the horizon line.

In day-to-day activities, a person’s focus darts from place to place as they

assess their surroundings. A perspective drawing, however, is from a specific



focus point. Because the viewer can only look at one place at a time, they

can only have one center of vision.

Vanishing Point (VP)

e vanishing point is at infinity. Objects get smaller as they recede in space,

therefore at infinity all objects disappear. Parallel lines of infinite length

appear as converging lines and connect to the same vanishing point.

Vanishing points can be on the horizon line, above the horizon line, or below

the horizon line. ere can be an unlimited number of vanishing points, but

there is only a single one-point vanishing point. is single point is always

located at the center of vision. Figure 1.4 demonstrates how the vanishing

point and previously discussed terms relate to ea other.

Cone of Vision

A person can focus on only a small area, about 2° of the surrounding

environment. Peripheral vision, however, is quite large, beyond 180°. e

cone of vision lies between them (Figure 1.5). e cone of vision is a 60°

circle that defines the viewer’s image area (the area to be drawn within). e

center axis of this circle is the focal point. Imagine looking through a cone

with a 60° angle centered along its axis. Its intersection with the picture

plane creates a circle that defines the size of the cone of vision (Figure 1.6).

e farther away the viewer is from the picture plane, the larger the cone of

vision and the circle become. Beyond the confines of the 60° cone, distortion

becomes problematic. Shapes look streted, tilted, and corners no longer

look like right angles. e cone of vision is drawn to warn the artist that

excessive distortion waits beyond its border. Inside the 60° cone, distortion

still exists, but is less apparent.



Figure 1.5 Peripheral vision is beyond 180°. e cone of vision is 60°, and the focal

area is 2°.



Figure 1.6 e cone of vision is 60° from the station point.

Measuring Point (MP)

e measuring point is a tool used to measure foreshortened lines. Every

vanishing point has a dedicated measuring point. Before perspective,

measuring was a guessing game. Understanding how math relates to

drawing enabled artists to draw accurate dimensions. e placement of a

measuring point is specific and determined by geometry. Calculating

measuring points is discussed further in Chapter 3.

Measuring Line (ML)

e measuring line is the ruler and determines the drawing’s scale. A 1:1

scale creates a drawing that is actual size. Every foot or meter of the object

being drawn equals that dimension on the paper. Drawing a house using a

1:1 scale would require a piece of paper as large as the house. To avoid this,



the scale can be anged. A 1:2 scale means every unit on the drawing

equals 2 units in the real world; therefore, the drawing is half scale. e size

of the paper and the subject being drawn determine the scale to use.

e measuring line is typically placed on the picture plane at the ground

level. In this position, the measuring line not only determines the scale, it

also determines the height of the viewer. Since the horizon line is at the

viewer’s eye level and the measuring line is on the ground, the distance

between the horizon line and measuring line equals the distance between the

viewer’s eyes and the ground plane (Figure 1.7).

Figure 1.7 e viewer’s eye level equals the distance from the measuring line to

the horizon line. e placement of the measuring line determines the height of the

viewer.



Figure 1.8 Plan and elevation views show only two dimensions.

Plan View

A plan view is an orthographic drawing from above. A plan view has no

perspective; it shows only two dimensions: width and depth (Figure 1.8).

Elevation View

An elevation view is an orthographic drawing from the front, ba, or side.

An elevation view has no perspective. Like plan view, only two dimensions

are shown: height and width (front or ba elevation view), or height and

depth (side elevation view) (Figure 1.8).

Station Point and Picture Plane Dynamics

When a viewer sees an image, the shape perceived is determined by the

relationship between three elements: the station point, the picture plane, and

the object. When the relationship between these three elements anges, the

object seen also anges. To gain a beer understanding of this

phenomenon, ea of these elements will be examined more closely.

Station Point



e station point can be close to the picture plane, or far away. e farther

away the viewer is from the picture plane, the more foreshortened depth

appears. When the viewer moves closer to the picture plane, the

foreshortening is less severe. Width, however, is not affected (Figure 1.9).

Picture Plane

e picture plane can be positioned anywhere between the station point and

the horizon line. e closer the picture plane is to the viewer, the smaller the

object appears. e farther the picture plane is from the viewer, the larger

the image appears. e perspective does not ange. e images are

identical in shape, but are different sizes (Figure 1.10).

Figure 1.9 Moving the viewer anges the object’s shape but not the object’s size.

It remains the same width.

Figure 1.10 Moving the picture plane anges the object’s size but not the shape.



Object

When the image is closer to the picture plane it is larger and less

foreshortened. As the image moves farther from the picture plane it

becomes smaller and more foreshortened. e object’s size and shape are

affected (Figure 1.11).

Figure 1.11 Moving the object anges the size and shape.

While it may seem as though there are many variables to be remembered

when drawing in perspective, in reality these effects happen automatically

when using perspective teniques.



2 

One- through Six-Point Perspective, an

Overview

In the world of perspective, there are six ways a viewer can be oriented to

the mise-en-scène. Ea orientation results in a different diagram, and ea

diagram depends on the relationship of the viewer to the picture plane and

to the object being drawn. e relationship of these three items (as well as

the shape of the picture plane) determines the diagram used. Perspective

diagrams can be from one-point all the way up to six-point perspective.

Detailed instructions are given for these orientations in subsequent apters,

but first, a brief overview of them follows before examining their finer

aspects.

One-Point Perspective



Figure 2.1 In one-point perspective vertical and horizontal lines are parallel with

the picture plane. Objects outside of the cone of vision are distorted. A cube will

look more like a rectangle.

In 1435, Leon Baista Alberti published On Painting, the first book to

diagram perspective— specifically, one-point perspective. In one-point

perspective, vertical and horizontal dimensions are parallel with the picture

plane. Vertical lines are drawn perpendicular to the horizon line, and

horizontal lines are drawn parallel with the horizon line. Depth is

foreshortened. ese foreshortened lines are oriented 90° to the picture plane

and connect to the center of vision (Figure 2.1).

Two-Point Perspective

Objects drawn in two-point perspective appear early in the sixteenth century

(Figure 2.2). In two-point perspective, horizontal lines are angled to the

picture plane, and thus foreshortened. ey connect to a le vanishing point

(LVP) or right vanishing point (RVP). Only vertical dimensions are parallel

with the picture plane and are drawn as true vertical lines (Figure 2.3).



Figure 2.2 Albret Dürer, St. Jerome in His Study (engraving), 1514, London,

British Museum. e air to the right of St. Jerome is an early example of two-

point perspective.



Figure 2.3 In two-point perspective, vertical dimensions are parallel with the

picture plane and horizontal dimensions are angled to the picture plane. Objects

outside the cone of vision are distorted; cubes look rhomboid, their corners not

appearing to be right angles.

ree-Point Perspective



Figure 2.4 Carlo Urbino, Detail from the Codex Huygens, Morgan Library &

Museum, NY.

A rudimentary understanding of three-point perspective appears in

examples from the Codex Huygens, a sixteenth-century Renaissance

manuscript once thought to be the work of Leonardo da Vinci. is

manuscript demonstrates the foreshortening effect of looking up: a worm’s-

eye view (Figure 2.4). In three-point perspective, no lines are parallel with

the picture plane. e picture plane is angled to the ground, because the

viewer is looking up or down at the image. e center of vision is above or

below the horizon line. ere is a le, right, and vertical vanishing point

(VVP), and all lines are foreshortened (Figure 2.5).



Figure 2.5 In three-point perspective no lines are parallel with the picture plane.

Objects outside the cone of vision are distorted. ey look streted and tilted.

Four-Point Perspective

Before artists understood the cone of vision, many unwiingly aempted

wide-angled views— with unfortunate results. ey had no way to

compensate for the effects of distortion caused by a flat picture plane.



Four-point perspective is a panorama view. It displays information

normally unseen. ere are four vanishing points, and ea are 90° apart.

Horizontally, the picture plane is curved and surrounds the viewer like a

cylinder. is creates a 360° image area. Vertically, the picture plane is flat.

erefore, to prevent distortion, the vertical image area remains at 60°.

Vertical lines are parallel with the picture plane and are drawn straight.

Horizontal lines are not parallel with the picture plane, and are drawn

curved (Figure 2.6).

A variation on the panorama theme is to turn the picture plane 90° (a

vertical cylinder). is orientation creates a four-point view from zenith to

nadir.

Figure 2.6 In four-point perspective vertical lines are straight and horizontal lines

are curved.

Five-Point Perspective

Curvilinear perspective, sometimes called “fish-eye,” can be traced to the

infancy of perspective. Jan van Ey’s painting, The Arnolfini Portrait,

depicts a reflection on a curved mirror (Figure 2.7). e science surrounding



curvilinear perspective was not fully understood, but artists had many

opportunities to study the appearance of lines reflected on curved surfaces.

Polished stones used as mirrors have been found dating ba to 6000 BC.

Early curvilinear perspective was confined to reflected images. However,

curvilinear perspective can be applied to real objects. In five-point

perspective, the picture plane is a hemisphere. Five-point perspective

creates a 180° image. Everything is depicted from east to west and from

north to south. ere is a vanishing point at the top of the hemisphere and

one at the boom, one to the le and one to the right. e fih vanishing

point is at the center of vision (Figure 2.8).



Figure 2.7 Jan van Ey, e Arnolfini Portrait (detail), 1434, National Portrait

Gallery, London.

Figure 2.8 In five-point perspective, the picture plane is a hemisphere.

Six-Point Perspective

A six-point image displays everything in front of the viewer, as well as

everything behind them—a 360° image. e picture plane is a sphere. e

two images are typically displayed side-by-side (Figure 2.9).



Figure 2.9 In six-point perspective, the picture plane is a sphere with the station

point at its center.
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One-Point Perspective

Before a perspective drawing can be created, a perspective diagram needs to

be constructed. e diagram is the foundation for the image, the basal

element of perspective. It establishes the infrastructure and key elements

necessary for accurate representation.

Creating a One-Point Perspective Diagram

Here is a list of the principal components of the diagram, and how to

arrange them.

Horizon Line (HL)

Begin by drawing a horizontal line. is line represents the horizon. It can be

drawn anywhere, although it is usually best to place it somewhere in the

center of the page. e horizon line is always at the viewer’s eye level.

Station Point (SP)



Figure 3.1 Establishing the distance from the viewer to the picture plane.

e placement of the station point defines the distance from the viewer to

the picture plane. e station point’s location is in the third dimension—

however, the paper has only two dimensions. is creates an obvious

problem. is obstacle is circumvented by drawing the distance from the

viewer to the picture plane vertically. e distance from the center of vision

to the station point represents the distance from the viewer to the picture

plane. Decide how far the viewer is from the picture plane (the greater the

distance, the larger the cone of vision). en, from the center of vision, draw

a line down to the station point (the station point and the center of vision are

always aligned). ere is no foreshortening to this line (Figure 3.1).

For example, if the distance is 10 units long and the scale is 1:2, then the

viewer is 20 units from the picture plane. It is usually a good idea to put the

station point as far away as comfortable. e farther away it is, the larger

the cone of vision will be, therefore allowing for a larger drawing area.

Cone of Vision

From the station point, project a 30° angle on ea of the lines of sight. en,

centered on the focal point, draw a circle (Figure 3.2, boom). Before

beginning the drawing, it is prudent to establish the cone of vision. It’s

helpful to know the size of the image area at the outset.



Figure 3.2 e cone of vision is a circle created from a 60° cone projected from the

station point.

Measuring Points (MP)

From the station point, project two 45° angles to the horizon line (Figure 3.3).

ese are the measuring points. Lines drawn from either of these points

create 45° angles in perspective. ese points are used to measure

foreshortened lines—lines drawn to the center of vision.



Figure 3.3 One-point measuring points are 45° from the station point.

Measuring Line (ML)



Figure 3.4 e measuring line defines the scale. e distance from the horizon line

to the measuring line defines the height of the viewer (5 units tall in this

illustration). e distance from the center of vision to the station point is how far

the viewer is from the picture plane (8 units in this illustration).

Place the measuring line below the horizon. e measuring line is on the

ground plane. e horizon line is at the viewer’s eye level, therefore the

distance from the measuring line to the horizon line equals the distance from

the ground to the viewer’s eye. e lower the measuring line is drawn, the

taller the viewer.

Divide the measuring line into units (Figure 3.4). roughout this book,

distances are referred to as units. A unit can represent any distance—one in

or one centimeter, ten miles or 10,000 meters.

e one-point perspective diagram is now complete, and the drawing can be

started.

Measuring in One-Point Perspective

In one-point perspective objects are oriented to the picture plane in a specific

way. Height and width are parallel with the picture plane, and depth is

perpendicular to the picture plane. Ea of these dimensions will be

examined in turn.

Measuring Width

e line of sight is the direction in whi the viewer is looking. Objects can

be to the le or to the right of the line of sight. Measure this distance by

counting units along the measuring line (Figure 3.5).



Figure 3.5 Measure width by counting units to the le or right of the line of sight.

Measuring Depth

Lines that are 90° to the picture plane connect to the center of vision (Figure

3.6). ese lines are foreshortened, and can’t be measured directly with a

ruler. e process of measuring foreshortened lines involves some simple

geometry—no equations are required. e angle between opposing corners

of a square is 45°. By drawing a 45° angle, a square can be drawn. e

measuring point draws 45° angles in perspective. e measuring point

transfers a horizontal distance to a foreshortened line. When measuring in

one-point perspective, half a square is drawn—a right-angle isosceles triangle

(Figure 3.7). See Chapter 6 for supplemental information on measuring.



Figure 3.6 Lines that are 90° to the picture plane connect to the center of vision.



Figure 3.7 Use a measuring point to measure lines connecting to the center of

vision. e measuring point draws a foreshortened isosceles triangle.

Measuring Height

To measure vertically, turn the measuring line 90°. Using the same scale,

measure up from the ground to the desired height (Figure 3.8). e height

can be projected forward or baward using the center of vision.



Figure 3.8 Measure height by turning the measuring line vertically. Height can be

projected forward or baward using the center of vision.

Drawing a One-Point Perspective Box

Now height, width, and depth can be measured, these three skills can be

combined to draw a box—a one-point perspective, right-angled cuboid.

Create the Diagram

First, draw the diagram. e dimensions used are random, and can, of

course, be any desired number. Make the viewer 4.5 units from the picture

plane, with an eye-level 3 units above ground (Figure 3.9).



Figure 3.9 Defining the viewer’s height and distance from the picture plane.

Place the Box

e box is 1 unit to the le of the center of vision and 2 units behind the

picture plane (Figure 3.10).

Measure the Box



e box is 2 units wide, 3 units deep, and 2 units high. Measure ea

dimension one line at a time (Figures 3.11–3.14).

Figure 3.10 e elevation view shows the box 1 unit to the le of the center of

vision. e plan view shows the box 2 units behind the picture plane.



Figure 3.11 (BELOW) e dot represents the front right corner of the box. It is 1

unit to the le of the center of vision, and 2 units behind the picture plane.



Figure 3.12 Measure the width of the box along the measuring line, and project the

dimension baward using the center of vision.

Figure 3.13 Use the measuring point to determine depth.



Figure 3.14 Measure up from the measuring line, then project the height ba to

the desired location using the center of vision.

Complete the Box

Once the height, width, and depth have been measured, find the

intersections of these lines to create the corners of the box. Vertical lines are

perpendicular to the horizon line. Horizontal lines are parallel with the

horizon line. Lines that recede in space connect to the center of vision

(Figure 3.15).

Figure 3.15 e completed box.



Continue to practice. Try varying the dimensions, or anging the viewer’s

eye level and distance to the picture plane. Draw several objects on one

page. Become comfortable with one-point perspective before progressing to

two-point.

Measuring in Front of the Picture Plane

e previous box was behind the picture plane (between the picture plane

and the horizon line). Depth was measured by projecting baward from the

measuring line (toward the measuring point) (Figure 3.16).

Figure 3.16 Measuring 2 units behind the picture plane.

If an object is in front of the picture plane (between the picture plane and

the viewer), measure depth by projecting forward (away from the

measuring point) (Figure 3.17).



Figure 3.17 Measuring 2 units in front of the picture plane.

If an object is straddling the picture plane, depth is measured by

projecting baward and forward from the measuring point (Figure 3.18).

Figure 3.18 Measuring a line that straddles the picture plane. is line is 4 units

long (1 unit in front of the picture plane, and 3 units behind the picture plane).

is dynamic will be explored further with an example. Draw a room

with the measuring line placed between the ba wall and the viewer (the

picture plane bisects the room) (Figure 3.19). Measurements behind the

picture plane are projected baward, toward the measuring point (Figure

3.20). Measurements in front of the picture plane are projected forward,

away from the measuring point. e room surrounds the viewer, so the

complete room cannot be drawn. e front of the room is beyond the cone



of vision, as well as beyond the edge of the page (Figure 3.21). Placing a grid

on the floor may help to visualize the space. Ea square represents a half

unit, whi leads to the next topic: grids (Figure 3.22).

Figure 3.19 e viewer is 4 units in front of the picture plane. e ba of the room

is 4 units behind the picture plane.



Figure 3.20 Measuring 4 units behind the picture plane.



Figure 3.21 e beginning of the room is 4 units in front of the picture plane. e

viewer is also 4 units in front of the picture plane. is creates a distance far

beyond the cone of vision, and far beyond what is practical to plot.

Figure 3.22 Placing a grid on the floor helps to visualize the space.



Figure 3.23 Follow these steps to create a one-point perspective grid.



Drawing a One-Point Grid

Drawing a grid is a straightforward task. However, take care to not be

overly dependent on grids. If perspective—and the geometry—is understood,

then the grid is superfluous. Drawing without a grid is faster and more

versatile, but it does have a steeper learning curve. A grid takes time to

draw, and is awkward for depicting objects that do not conform to its

paern. However, grids—once they are established—conveniently guide the

direction of lines and assist in establishing dimensions. Learning the grid

system can be a good starting point for those new to perspective, and there

are some instances where establishing a grid is the best solution to a

problem.

Drawing a grid involves creating a series of squares. e size of ea

square, and the number of squares created, are determined by the image.

More detailed drawings suggest a smaller, tighter grid. Because of the

superabundance of lines, grids are usually used as an underlay. Ea square

represents 1 unit of measurement (Figure 3.23). A horizontal grid is used to

measure width and depth, and a vertical grid is used to measure height

(Figure 3.24).



Figure 3.24 Using a grid to measure.
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Reference Points

Reference points (RP) look like vanishing points, but they differ in function.

Vanishing points are used to draw objects; reference points are used to move

objects. While vanishing points are specific in their location, any dot can be

used as a reference point. When drawing multiples of an object (a crowd of

people, for example), reference points are convenient tools. ere are,

however, two important caveats: the lines being moved must be on the same

horizontal plane, and they must be parallel with ea other. A point on the

horizon line creates lines parallel with the ground plane. erefore, a

reference point can’t be used to move a line that is on the ground to a

position above the ground.

Reference points are not needed to move lines up, down, or from side to

side. Lines moving in any of these directions do not ange size (Figures 4.1–

4.3, top). Reference points are only used to move lines forward or baward

in space (Figures 4.1–4.3, boom).



Figure 4.1 Reference points are not needed when moving lines from side to side or

up and down (top). Use reference points to move lines forward or baward in

space. e lines being moved must be parallel with ea other and on the same

horizontal plane (bottom).



Figure 4.2 Use reference points to move vertical lines. e lines being moved must

be parallel with ea other and on the same horizontal plane.



Figure 4.3 Use reference points to move foreshortened lines. e lines moved must

remain parallel with ea other (connect to the same vanishing point), and be on

the same horizontal plane.



5 

Two-Point Perspective

When an object is viewed at an angle, when only the vertical dimension is

parallel with the picture plane, and when both width and depth are

foreshortened, the object is in two-point perspective. Predictably, two-point

perspective has two vanishing points: a le vanishing point (LVP) and a right

vanishing point (RVP). e location of the vanishing point depends on the

angle of the object being drawn.

Two-Point Perspective Diagram

Vanishing Points

Most objects have 90° corners. To create 90° corners in perspective, the le

and right vanishing points must be 90° apart (subsequent apters will

discuss how to create other angles).

Using a triangle, place a true 90° angle at the station point, then project

that angle to the horizon line. e resulting points (the right and le

vanishing points) will draw 90° angles in perspective. Any 90° angle

projected from the station point creates two vanishing points that draw that

same angle in perspective (Figure 5.1).

Understanding perspective is to understand angles. e station point is a

powerful tool. Angles placed at the station point mirror the perspective

angles in the drawing. To draw an object at a specific angle to the picture

plane, draw that angle from the station point to the horizon line; the

vanishing points created will draw those same angles in perspective (Figure



5.2). Multiple objects at various angles can be created using this tenique, as

discussed further in Chapter 7 (Figure 7.2).

Measuring Points

Ea vanishing point has a dedicated measuring point. e le vanishing

point has a le measuring point (LMP) and the right vanishing point has a

right measuring point (RMP). e le measuring point measures lines

connecting to the le vanishing point. e right measuring point measures

lines connecting to the right vanishing point.

e placement of measuring points is specific. e distance from the

measuring point to the vanishing point is the same as the distance from the

station point to the vanishing point. ere are two ways to find the correct

placement of the measuring point, using a compass or a ruler. When using a

compass, put the stationary arm of the compass on the vanishing point and

draw an ar from the station point to the horizon line. e same result can

be aieved using a ruler (Figure 5.3).



Figure 5.1 True angles are found at the station point. A true 90° angle drawn from

the station point creates le and right vanishing points that draw 90° angles in

perspective. ere can be as many pairs of vanishing points as there are objects.

Figure 5.2 Use the station point to draw objects at specific angles. e le example

shows the object turned 45° to the picture plane. e right example shows the

object turned 30°/60° to the picture plane. Any angle can be created by projecting it

from the station point to the horizon line.



Figure 5.3 Plot the location of the le and right measuring points using a compass

or a ruler.

Measuring Depth

Measuring in two-point perspective follows the same procedures as one-

point. It is, however, a lile more complicated, as there are now two

measuring points. e more points there are on the horizon line, the harder

it is to keep tra of them. Color-coding the perspective layout keeps

mistakes to a minimum. For example, label lines from the right vanishing

point and right measuring point in one color, and label lines from the le

vanishing point and le measuring point in another.

Use the le measuring point to measure lines connecting to the le

vanishing point (Figure 5.4). Use the right measuring point to measure lines

connecting to the right vanishing point (Figure 5.5).



Figure 5.4 Use the le measuring point to measure lines that connect to the le

vanishing point.

Figure 5.5 Use the right measuring point to measure lines that connect to the right

vanishing point.

Completing the Shape



Aer measuring the le and right side, complete the shape by connecting

the corners to vanishing points. Take care to connect the lines to vanishing

points. Do not connect lines to measuring points. Measuring points are only

for measuring, they are not part of the physical object. Lines connecting to

measuring points are phantom lines; they are invisible. is mistake can

usually be spoed quily, as the shape’s corners will not look square (Figure

5.6).

Figure 5.6 e ba of the box connects to vanishing points. A common mistake is

to use a measuring point where a vanishing point should be used.

Measuring Height

Measuring vertical dimensions in two-point perspective is no different than

one-point perspective. Vertical lines touing the picture plane are actual

size. Project the height to the desired location using a vanishing point or a

reference point (Figure 5.7).



Figure 5.7 Measure vertical dimensions at the picture plane.

More Two-Point Measuring

In the previous example, the front of the box was touing the picture plane.

is creates a convenient situation for measuring. e zero point was where

the box contacts the measuring line. To measure depth, it was a case of

simply counting to the le and right of zero. But what if the box does not

tou the measuring line? How is this measured, and where is the zero

point? Where does the counting begin? Before discussing the solutions, draw

a sample square that does not tou the picture plane.

Location

Place the square 1 unit to the right of the center of vision and 3 units behind

the picture plane. Use one-point perspective to find this location (Figure 5.8).

Refer to Chapter 3, Figures 3.9–3.10 for additional information about

measuring in one-point perspective.



Figure 5.8 e front corner of the box (represented by the dot) is 1 unit to the right

of the center of vision and 3 units behind the measuring line.

Measuring Behind the Picture Plane

ere are two ways to measure shapes not touing the measuring line: 1)

project the object to the measuring line, or 2) move the measuring line to the

object.

Method 1: Project the Object to the Measuring Line

To measure an object, a point is needed to begin measurements—a zero

point. To find the zero point, project the line being measured to the

measuring line. How it is projected is critical; there is specific geometry to

adhere to. e appropriate measuring point must be used to find the length

of a foreshortened line. To find the zero point for lines drawn to the right or

le vanishing point, use the right or le measuring point respectively. Use

the right measuring point to measure lines connecting to the right vanishing



point (Figure 5.9), and use the le measuring point to measure lines

connecting to the le vanishing point (Figure 5.10).

Figure 5.9 e right measuring point is used to measure lines connecting to the

right vanishing point.



Figure 5.10 Measure the le side by finding a new zero point. Measure the desired

distance and project ba to the le measuring point.

Project the beginning of the line to the picture plane. is is the zero point.

Count the desired distance along the measuring line, and then project ba

to the same measuring point.

Connect the lines to vanishing points to complete the square (Figure 5.11).

Figure 5.11 Connect to vanishing points to complete the square.



Method 2: Move the Measuring Line to the Object

An alternative method is to move the measuring line. Position it so that it

toues the object being measured. e measuring line must be moved in

perspective, using a reference point (Figure 5.12). Once the new measuring

line is in place, follow the procedures outlined in Figures 5.4–5.6.

Figure 5.12 Use a reference point to move the measuring line.

Distant Objects

If the object being measured is located a great distance from the picture

plane, using Method 1 can be inconvenient. In these situations, Method 1

would require a very long ruler. e second method, moving the measuring

line ba and creating smaller units closer to the object being measured, is

the preferred method (Figures 5.13–5.15).



Figure 5.13 With the measuring line relocated, measure the respective lines using

the proper measuring points.

Figure 5.14 Connect lines to vanishing points to create the ba of the square.



Figure 5.15 Moving the measuring line (Method 2) keeps measurements from

exceeding the bounds of the paper (as compared to Method 1).

Measuring in Front of the Picture Plane

Measuring lines in front of the picture plane follows the same basic

procedures as measuring lines behind the picture plane. e difference is that

lines are projected forward from the measuring line instead of baward

(Figure 5.16).



Figure 5.16 Measuring in front of the picture plane.

If the line being measured does not tou the picture plane, use the

measuring point to project the measurements forward (Figure 5.17).

Figure 5.17 Use the measuring point to project the line being measured to the

measuring line.

If a line straddles the picture plane it requires a combination of projecting

measurements baward and forward (Figure 5.18).



Figure 5.18 is line is 3 units in front and 2 units behind the picture plane.

Drawing A Two-Point Box

Now that the basics of two-point perspective have been covered, it is time to

apply this information to a drawing. is example is a box, 2 units tall, 3

units wide, and 3 units deep. It is 1 unit to the le of the center of vision and

3 units behind the picture plane (Figure 5.19 shows how the finished layout

will look). To approa this problem, do one step at a time.



Figure 5.19 e completed box with construction lines intact.

Location

First, using one-point perspective, measure 1 unit to the le of the center of

vision, then 3 units behind the picture plane (Figure 5.20).

Figure 5.20 e location of the box’s front corner is 1 unit to the le and 3 units

behind the measuring line.



Le Side

First find the zero point. Using the le measuring point, project the front

corner of the box (represented by the dot) to the measuring line (Figure

5.21). Measure 3 units to the le, and then project ba to the le measuring

point (Figure 5.22).

Figure 5.21 Finding the zero point.



Figure 5.22 Measuring the le side of the box.

Right Side

Use the same procedure to measure the right side. But first, find a new zero

using the right measuring point (Figure 5.23).



Figure 5.23 Measuring the right side of the box.

Height

Height is not foreshortened. A reference point can be used to establish the

height. A reference point can be any dot on the horizon line (Figure 5.24 uses

the right measuring point).



Figure 5.24 Using the right measuring point as a reference point to measure height.

Completing the Box

To complete the box, connect the horizontal lines to the vanishing points,

and draw the vertical lines parallel with the picture plane (Figure 5.25).

Figure 5.25 Connect lines to vanishing points to complete the box.

Two-Point Perspective Grid

As with one-point, a two-point perspective grid, once established, is an easy

way to measure shapes and determine the proper direction of lines. But once

confidence with perspective teniques has been aieved, grids become

unnecessary. ey take undue time to create and they make drawing objects

at angles other than the grid angles awkward. Despite its drawbas, the

grid’s simplicity is enticing, and there are situations where establishing a grid

can be the best solution to a problem.



Diagram

To draw a grid, first construct the diagram (establish the HL, SP, VPs, MPs,

and ML). Decide on the placement of the grid (the front corner is typically

placed on the measuring line, aligned with the center of vision). Draw lines

to the le and right vanishing points. en, using the appropriate measuring

point, divide these lines into equal increments. e number of increments

made depends on the desired size of the grid (Figure 5.26).

Figure 5.26 Measure evenly spaced segments along the lines connecting to the

vanish points.

Horizontal Grid

Aer measuring the grid segments, connect these measurements to

vanishing points (Figure 5.27).



Figure 5.27 Connect the measurements to vanishing points to create a grid.

Figure 5.28 Create a vertical grid by transferring dimensions from the picture

plane. e right measuring point is functioning as a reference point.



Figure 5.29 Connect vertical segments to the vanishing point.

Vertical Grid

Use a reference point to project the vertical dimensions from the picture

plane (Figure 5.28). Project ea segment to the vanishing point (Figure 5.29).

Extend the horizontal grid lines vertically to finalize the grid (Figure 5.30).

Create a grid on the le wall if needed.



Figure 5.30 Project vertical lines from the horizontal grid to complete the squares.

Completing the Grid

Once the grid is complete, it is typically used as an underlay to guide

drawing. Ea square represents 1 unit. Using this as a guide, a shape of any

size can be made by counting squares and conforming the lines to the grid.

Use the horizontal grid to determine the width, depth, and placement of

the shape being drawn. Use the vertical grid to determine height (Figure

5.31).



Figure 5.31 Use the grid to measure objects. is cube is 1 unit from the front le

wall, 2 units from the front right wall, and 1 unit above the ground.
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Measuring Point Geometry

Being well-versed in geometry is not required in order to draw in

perspective. But understanding why these methods are used helps remove

the mystery and confusion that surrounds the process. To understand why

measuring points work, isosceles triangles need to be understood. Isosceles

triangles have two sides (legs) that are equal in length. When creating a

measuring point, an isosceles triangle is also created (Figure 6.1).

Connecting the vanishing point, station point, and measuring point forms

a true isosceles triangle (Figure 6.1, right).

Figure 6.1 e distance from the le vanishing point to the le measuring point is

the same as the distance from the le vanishing point to the station point, an

isosceles triangle.

Lines drawn from the measuring point draw foreshortened isosceles

triangles. e measuring line is always parallel with the picture plane; it is

never foreshortened. When measuring, the length is transferred from the

measuring line to a foreshortened line. e measuring line and the



foreshortened line are the legs of the isosceles triangle. For the two legs of

the triangle to be the same length, the angle created by the measuring point

must be specific (Figure 6.2). It is therefore critical to use the proper

measuring point. Otherwise, the shape drawn would not be an isosceles

triangle; the two legs would not be the same, and the measurements would

be inaccurate.

Figure 6.2 When using a measuring point, a foreshortened isosceles triangle is

created.
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Horizontal Angles

ere is a one-to-one relationship between true angles at the station point

and perspective angles from vanishing points. e station point serves as the

axis (center point) for angles. Around the station point are angles totaling

360° (Figure 7.1). It is worth reviewing Chapter 5 as this content builds on

that foundation.



Figure 7.1 True 360° angles shown at the station point, and 360° angles shown in

perspective to the upper le.

True angles at the station point mirror the perspective angles drawn from

the vanishing points. An angle drawn from the station point, projected to the

horizon line, creates a vanishing point that will draw that same angle in

perspective. For example, to create a line 30° to the right of the center of

vision, draw a true 30° angle at the station point. Project that angle to the

horizon line. e resulting vanishing point will draw 30° angles in

perspective (Figure 7.2). Keep in mind that there are 360° to consider. Here is

another example: to create a line 130° to the right of the center of vision,

draw that angle at the station point and project it to the horizon line. e

resulting vanishing point draws that angle in perspective (Figure 7.3).

Figure 7.2 True angles projected from the station point create vanishing points that

draw that same angle in perspective.



Figure 7.3 Angles can radiate from any direction around the station point, as there

are 360°.

An Example of Horizontal Angles



Figure 7.4 It is possible to open a door in or out, whi makes it a convenient

example to explore angles other than 90°.

Most objects have right angles. But there are instances where angles other

than 90° are called for. For an example, try applying this understanding of

angles to an illustration. A door makes an excellent demonstration, as doors

can swing out and swing in. ere are a full 360° of possibilities (Figure 7.4).

Of course, these general concepts apply to any situation that involves angles

other than 90°.

e Wall’s Angle

Place the door on the right, opening out 60° from the wall. e first step is to

determine the angle of the wall. e wall is in perspective, so, to find the

true angle of the wall, look to the station point. Angles at the station point

are true angles. e line connecting the station point to the right vanishing

point indicates the true angle of the right wall (Figure 7.5).



Figure 7.5 True angles of any foreshortened line can be found at the station point.

e Door’s Angle



Figure 7.6 Angles at the station point reflect the true angles of perspective lines.

e station point is the axis point for true angles. e door’s hinge is the axis

point for perspective angles. Since the door’s threshold projects forward, in

front of the hinge, create that same angle at the station point (Figure 7.6).

Figure 7.7 Draw the true angle of the door at the station point. e angles at the

station point are the same as those in a plan view.



Figure 7.8 Project the true angle of the door to the horizon line, creating a

vanishing point that draws that same angle in perspective.



Figure 7.9 Lines drawn from the door vanishing point are 60° from lines drawn to

the right vanishing point.

is door opens outward 60°, so draw that angle at the station point

(Figure 7.7). Project the 60° angle to the horizon line (Figure 7.8). is

vanishing point draws angles that are 60° from lines drawn to the right

vanishing point (Figure 7.9).

e reshold’s Length

e door must close properly, so it must be the same length as the threshold.

e next step is to measure the door. is is done with the right measuring

point (Figure 7.10).



Figure 7.10 Use the right measuring point to measure the door’s threshold.

e Door’s Length

Figure 7.11 Create a door measuring point.



Aer determining the length of the threshold, measure the door. Since every

vanishing point has its own measuring point, a new measuring point for the

door needs to be created (Figure 7.11). Measure the door using the door

measuring point (Figure 7.12). Complete the door by connecting lines to

vanishing points (Figure 7.13).

Figure 7.12 Use the right measuring point to measure



Figure 7.13 Completed door. To draw the thiness, project a 90° angle at the

station point.
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Ellipses, Spheres, Spiral Forms, and Random

Curves

Ellipses

Figure 8.1 Two of the most common mistakes when drawing ellipses.

Ellipses are circles in perspective. Two common mistakes are drawing pointy

ellipses and flat ellipses (Figure 8.1). A sure way to correct ellipses is to plot

them in perspective. ere are many ways to plot an ellipse. Ea involves

finding points along the circle and connecting the dots. is method is

standard for drawing any curved object. e more points that are ploed,

the more accurate the curve. e teniques used to plot ellipses are not

especially complicated, but drawing smooth, beautiful ellipses involves more

than knowing how to plot them. It involves a level of skill and finesse; it

requires practice.

ere are many methods to plot an ellipse, more than discussed in this

book, but they all accomplish the same task—they all draw circles in



perspective. e following pages illustrate some of the best methods,

beginning with a four-point ellipse.

Four-Point Ellipse

Typically, four points do not give enough information to draw an accurate

ellipse. But, when used for small ellipses, they are usually adequate, as well

as simple and fast. Start by drawing a square. A circle toues a square at the

center of ea side—at four points. Locate these four points by finding the

center of the square (draw an X through the corners), then project outward

from the center point. Connect the four points with a smooth curve (Figure

8.2). Four points are adequate for small ellipses. For larger ellipses, it is

desirable to have more points. e more points there are, the more accurate

the ellipse.

Figure 8.2 Drawing a four-point ellipse.

Ellipses are especially susceptible to distortion. As ellipses stray from the

center of vision they tend to look tilted (Figure 8.3, le). is is an

unavoidable byproduct of perspective—objects drawn beyond the cone of

vision will look streted. Ellipses seem to magnify this problem. ese

distorted ellipses can be seen in many historical paintings. It is a frustrating

predicament. e ellipses are ploed correctly, but look askew. is dilemma

can be fixed by “eating” the ellipses: their shape is modified so they

appear visually correct. is requires a bit of artistic surgery and eyeballing.

Modify the shape so the le side of the ellipse appears symmetrical with the



right side (Figure 8.3, right). If the le and right side of an ellipse are

symmetrical, the ellipse will look flat. Sometimes it is best to use a lile

artistic license, correcting the ellipse to compensate for distortion.

Figure 8.3 Ellipses look increasingly distorted as they approa the cone of vision’s

border.

Eight-Point Plotted Ellipse

e eight-point ellipse is most commonly used. Having eight points, ea

being 45° apart, gives an accurate guide to draw most ellipses. ere are

many ways to draw an eight-point ellipse. One of the oldest methods used to

find these additional four points begins by drawing a true circle. e four

points are then transferred from the true circle to the perspective ellipse

(Figure 8.4).

Shortcut

is method works well but can be long-winded as there are quite a few

unnecessary lines. Instead of drawing the entire true circle, draw a quarter

circle. Once one point is ploed, that point can be transferred to the other

three locations (Figure 8.5).



Figure 8.4 How to draw an eight-point ellipse in perspective.



Figure 8.5 is is a shortcut to drawing an eight-point ellipse, saving time and

space.



Eight-Point Measured Ellipse

is is the most streamlined— and arguably the simplest— method to plot an

ellipse. Here’s how it works. Four points of the ellipse tou the square. e

other four points are located on the diagonal lines. e diagonal lines have a

vanishing point; they are foreshortened. e horizontal line representing the

radius of the ellipse is parallel with the picture plane, so it is not

foreshortened. Use this horizontal line as a measuring line. Using the

appropriate measuring point, transfer the length of the un-foreshortened

radius to the diagonal line (Figure 8.6). is method works well for

horizontal ellipses. It also works for vertical ellipses, but is a bit more

complicated. It involves using auxiliary vanishing points (AUX. VPs) and

auxiliary measuring points (AUX. MPs). is tenique is best confined to

horizontal ellipses.



Figure 8.6 Using a measuring point to create an eight-point ellipse.

Eight-Point Projected Ellipse

is method is based more on coincidence than on geometry; there is no real

logic to the procedure. Follow the steps, and an eight-point ellipse can be

drawn. It is qui and relatively simple, but this method is not 100 percent

accurate—it is extremely close, but not mathematically exact. It creates a

radius along the diagonal, slightly longer than it should be (about 2 percent

longer). is variation would be unacceptable to a meanical engineer— but

it is insignificant for a hand-drawn ellipse (Figure 8.7).



Figure 8.7 is eight-point ellipse tenique is simple and compact.



Twelve-Point Ellipse

e more points that are ploed, the more accurate the ellipse. ere are

two methods to draw a twelve-point ellipse. In the first method, the ellipse is

not mathematically perfect as before, but the deviation is insignificant. is

method is best used for larger ellipses. Follow the steps to find the twelve

points (Figure 8.8).



Figure 8.8 A twelve-point ellipse works well for large circles.

e points in the second version are a lile closer to ea other than in the

previous twelve-point diagram (Figure 8.9).



Figure 8.9 is is an alternative twelve-point ellipse method.



Twenty-Four-Point Ellipse

Combining the eight-point with one of the two twelve-point methods

creates an ellipse with twenty-four points. is is a lot of points to draw, but

if drawing a very big ellipse, a greater number of points is more desirable

(Figure 8.10).

Figure 8.10 Twenty-four-points are used for very large ellipses.

Ellipse Guides



Ellipse guides may seem the obvious solution to drawing an ellipse. ey are

convenient, fast, and create perfectly smooth ellipses, but they have one

major problem—they are not in perspective. An ellipse guide creates an oval,

not an ellipse. An oval is symmetrical vertically and horizontally; the center

is not a perspective center. A true perspective ellipse is not symmetrical; the

front half of the circle is closer to the viewer than the ba half. erefore,

the shape of the front is different from the shape of the ba (Figure 8.11).

Ellipse guides work well for small ellipses. But if the ellipse is large and is to

have a feeling of depth, a perspective ellipse is needed—an ellipse that is

ploed. However, despite their drawbas, ellipse guides can be used

successfully in a wide range of situations.

Figure 8.11 An ellipse guide ellipse compared to a perspective ellipse.

Ellipse guides come in sets ranging from 10° to 80°, in 5° increments. To

decide whi degree to use, first draw a square in perspective. e

proportions of the square will determine whi guide to use. Find the guide

that fits best. e ellipse needs to tou the center of the square’s sides. A

word of caution: the ellipse will not align properly with perspective points.

Remember, the ellipse guide is not in perspective, but the square is in

perspective. e points on the square will not mat the ellipse guide, nor

will the center of the ellipse align with the perspective center of the square.



Figure 8.12 e major and minor axes are printed on the ellipse guide (le). A

three-dimensional view shows the minor axis oriented 90° from the ellipse’s

surface (right).

e proper orientation of an ellipse guide is critical. is is where mistakes

are oen made. If the ellipse guide is not oriented correctly, the ellipse will

look tilted or angled. Using ellipse guides can be anti-intuitive; there are

rules to their use, and they oen go against instincts. To understand how to

orient an ellipse guide, the major and minor axes need to be understood.

e minor axis is the short side of the ellipse, and the major axis is the long

side. e minor axis is the primary concern. It should be thought of three-

dimensionally, going through the circle. It is like an axle on a tire: it

intersects the center of the ellipse at a right angle (Figure 8.12).

Ellipse Orientation

e correct orientation of an ellipse is determined by the direction of the

minor axis. Horizontal ellipses are oriented differently than vertical ellipses,

and one-point ellipses are oriented differently than two-point ellipses.

Horizontal Ellipses



e minor axis is oriented vertically for all horizontal ellipses. It does not

maer where the ellipse is placed, or if the ellipse is drawn in one- or two-

point perspective. If the ellipse is parallel with the ground plane, then the

minor axis is oriented vertically, parallel with the picture plane and

perpendicular to the ground (Figure 8.13).

Figure 8.13 When drawing horizontal ellipses, the minor axis is vertical,

perpendicular to the ground plane.

One-Point Vertical Ellipses

e minor axis is oriented horizontally for all one-point perspective vertical

ellipses. It does not maer where the ellipse is placed. If the ellipse is vertical

and in one-point perspective, the minor axis is oriented horizontally,

perpendicular with the picture plane and parallel with the ground (Figure

8.14).



Figure 8.14 When drawing vertical one-point ellipses, the minor axis is horizontal,

parallel with the ground plane.

Two-Point Vertical Ellipses

e minor axis connects to a vanishing point for all two-point perspective

vertical ellipses. But there are two vanishing points—whi one does the

minor axis connect to? It is helpful to think of the minor axis as an axle on a

tire. e minor axis—like an axle—goes through the ellipse. e minor axis is

a three-dimensional form. It is 90° from the surface of the ellipse (Figure

8.15).



Figure 8.15 When drawing vertical two-point ellipses, the minor axis connects to a

vanishing point. ink of the ellipse as a tire, and the minor axis as an axle.



Figure 8.16 To draw tapered cylindrical forms, measure the diameter on the ground

plane, then project the ellipse to the desired height and connect the ellipses.

Tapered Forms: Cups, Bottles, and the Like



Figure 8.17 Create squares on the ground plane, raise the squares to the desired

height, draw ellipses, and then follow the contour to create a curved cylindrical

shape.

To draw cylindrical forms with various diameters, first draw squares of the

appropriate size on the ground plane. Raise ea square to the desired

height. en draw an ellipse in ea square. For example, a simple tapered

cup will have a smaller diameter ellipse on the ground and a larger diameter

ellipse above. Draw both on the ground (Figure 8.16, top). en project the

top of the cup to the desired height. Connect the two ellipses to create the

cup (Figure 8.16, boom).

For complex forms of varying diameters, make more ellipses. e ellipses

serve as key cross-sections and guide the contour of the form— the more

ellipses, the more accurate the shape (Figure 8.17).



Spheres

Drawing a sphere in perspective is more complicated than one might think.

A compass can be used to draw a circle, and considered finished. But if a

specific size or placement for the sphere is desired, then a cube must be

drawn first. e sphere fits into the cube touing the center of all six sides.

e cube defines where the sphere toues the ground. e cube also defines

the diameter of the sphere.

Distortion

Before discussing how to fit the sphere into the cube, some issues concerning

the shape of the sphere will be explored. is may be surprising, but, in

perspective, spheres are not necessarily round. In fact, perspective spheres

are seldom round due to distortion. As an object moves away from the

center of vision, it becomes distorted. is is unavoidable. A ploed sphere

would be perfectly round at the center of vision. As the sphere moves

farther away from the focus point, the distortion increases.

A look at conic sections can further explain this phenomenon. A conic

section is the intersection of a plane and a cone. e silhouee of a sphere is

circular. When that round shape is projected to the eye, the visual pyramid is

conical. A cone intersecting a flat plane at an oblique angle creates an ellipse

(Figure 8.18). us, a sphere ploed in perspective is not round unless its

center is aligned with the focal point. A sphere ploed in perspective is an

ellipse.

Any circular object not aligned with the center of vision is drawn elliptical

by the rules of perspective. is elliptical shape will appear correct (circular)

if seen from the position it was ploed. If the person looking at the drawing

places their eye at the location of the station point, the ellipse will appear

circular. But, if a viewer looks at the drawing from a place other than where

the image was ploed, the perspective sphere will appear elliptical. It is

difficult to control the position from whi a viewer will look at the artwork.

Ideally, spheres should look circular, not elliptical. e boom line: use a



compass to make spheres. When drawing spheres, it is beer for them to

look correct than to be correct.

Figure 8.18 When an object is seen obliquely, distortion is inevitable.

Drawing a Cube

When using a compass to create a sphere, the sphere still needs to be a

specific size and in a specific location. First, draw a cube and bisect it

vertically and horizontally creating six tou points (Figure 8.19).



Figure 8.19 Locating the six tou points of the sphere.

Draw an ellipse in the cross-sections (Figure 8.20, le). e edges of the

two ellipses indicate the diameter of the sphere (Figure 8.20, right). ese

points are in perspective and will not align perfectly with a compass circle.

So, this is where some “eating” is required—use artistic license and draw

the sphere with a compass.



Figure 8.20 When drawing a perspective sphere, the horizontal and vertical cross-

sections determine the diameter of the circle.

Spiral Forms

Draw all sinuous lines by ploing points along the curve. A spiral is a

streted circle. It moves around as it moves up. Spiral forms are based on a

series of staed ellipses. A point is ploed along ea ellipse. Closer ellipses

create a tighter spiral. First, draw an ellipse representing the diameter of the

spiral. en decide on the spacing of ea ellipse (Figure 8.21).



Figure 8.21 is sta of ellipses looks tight, but the resulting spiral will be

surprisingly streted. e ellipses need to be very close to aieve a tight spiral.

Ea point on an eight-point ellipse represents one-eighth of a coil. A coil

is one complete turn of a spiral. It takes nine points (nine ellipses) to create a

complete coil.

Start at the boom ellipse and pi a point to begin the spiral. en, on

the ellipse above, move one point (one-eighth of a turn) counter-clowise

(or clowise depending on the rotation of the spiral). Repeat this process,

moving up one ellipse, and over one-eighth a turn. As the point moves up, it

also moves around the circle (Figure 8.22). Connect the dots, resulting in a

spiral (Figures 8.23–8.24). e method is not difficult, it is just time-

consuming. It is also dense with lines. All spiral forms (springs, barbershop

poles, candy canes, spiral staircases, etc.) are done using this basic tenique.



Figure 8.22 e solid dots represent points along the spiral. Ea dot moves up one

level and counter clowise one-eighth of a turn. Using an eight-point ellipse, nine

ellipses will make one complete coil.



Figure 8.23 Connect the dots to create a spiral. Add thiness to the spiral to create

a spring.





Figure 8.24 Create another spiral above the first to make a ribbon, candy cane, or

barbershop pole.

Spiral Staircase

Drawing a spiral staircase follows the same principles as any spiral form. A

spiral staircase is a series of triangles moving up and around a circle. First,

decide on the size of the steps. Divide the ellipse like a slice of pie. Ea slice

represents one step. Draw one step. en draw another, one level above the

first. e third step is one level above the second, and so on. Ea step

moves to the le and up one level (spiral staircases always go up clowise).

e spiral staircase will turn and rise as ea step is built (Figure 8.25).

Continue adding steps. Draw handrails by following the same guidelines

(Figure 8.26).



Figure 8.25 Build a spiral staircase one step at a time.



Figure 8.26 Add a handrail to finish the staircase.

Random Curves

e solution to drawing sinuous undulating lines where one shape flows

seamlessly into another is not complicated. It is more tedious than elegant.

Drawing curved lines involves ploing points along the curve and then

connecting the dots. e more points that are ploed, the more accurate the



curve. First, draw the serpentine shape in a plan or elevation view, a view

without perspective. Measure key points along the curve. en transfer those

dimensions to a perspective view (Figure 8.27).

Figure 8.27 is curved line was first drawn in an elevation view (lower le). Key

points along the curve were measured. ose points were then plotted in

perspective. Connect the points to create a perspective curve (upper right).
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Inclined Planes

Inclines continued to allenge artists long aer the foundations of

perspective had been established. When artists discovered that foreshortened

lines connect to vanishing points on the horizon, it was a difficult concept to

shed. Artists who aempted to draw inclines using points on the horizon line

were met with curious results. e shapes looked tapered (Figure 9.1). is

outcome made it obvious that something was amiss. Eventually it was

reasoned that inclines connect to points above or below the horizon.

Vanishing points on the horizon line draw lines parallel with the ground

plane. Vanishing points above or below the horizon line draw lines at an

angle to the ground plane.



Figure 9.1 Jan Vredeman de Vries, Perspective, 1604. Notice the vanishing points for

the inclines are erroneously placed on the horizon line.





Figure 9.2 Angles parallel with the picture plane have no vanishing points and are

drawn as true angles.

One-Point Inclines

ere are two types of one-point inclines: angles that are foreshortened

(lines that are not parallel with the picture plane), and angles that are

foreshortened (lines that are parallel with the picture plane). Angles parallel

with the picture plane have no vanishing point. ey are drawn as true

angles (Figure 9.2). ese are the simplest, yet the most deceiving, as many

erroneously aempt to locate a vanishing point where none exists.

Lines angling toward or away from the viewer are foreshortened. ese

angles have vanishing points. ese vanishing points are located above or

below the horizon line and are called auxiliary vanishing points (AUX. VP).

One-point perspective auxiliary vanishing points are aligned vertically with

the center of vision (Figure 9.3).

Upward Inclines

Whether a slope angles up or down depends on the point of view. If standing

at the top of the slope, the incline angles down. If standing below, the incline

angles up. Inclines with auxiliary vanishing points above the horizon line are

referred to as upward inclines, and inclines with auxiliary vanishing points

below the horizon line as downward inclines (Figure 9.3).

e farther away the auxiliary vanishing point is from the horizon line,

the steeper the incline. To draw an incline at a specific degree, a point for

true angles is needed.

Vanishing Point



True angles for horizontal lines are found at the station point. e station

point is used for angles parallel with the ground plane. Inclines can’t use the

station point. True angles for inclines are found at the measuring point. Any

angle drawn at the measuring point creates an auxiliary vanishing point that

draws that same angle in perspective. For example, if the desired slope is 30°,

use a 30° angle at the measuring point. Extend that angle until it intersects a

point directly above (or below, depending on the incline) the center of vision

(Figure 9.4–5).

Auxiliary Measuring Point

To measure the incline requires a measuring point. Geometry determines its

placement. From the auxiliary vanishing point, draw a horizontal line. is

line is called an auxiliary horizon line (AUX. HL). e auxiliary horizon line

functions as a placeholder for the measuring point. e auxiliary measuring

point is placed on this line.

Measure the distance from the auxiliary vanishing point to the one-point

measuring point. Transfer that distance to the auxiliary horizon line (Figure

9.6).



Figure 9.3 Inclines not parallel with the picture plane are foreshortened and have

vanishing points above or below the center of vision.



Figure 9.4 e measuring point is the true angle for inclines. Use the measuring

point to establish the location of auxiliary vanishing points.



Figure 9.5 Any line drawn from the 30° auxiliary vanishing point creates an incline

30° from the ground plane.



Figure 9.6 e distance from the auxiliary vanishing point to the measuring point

is the same as the distance from the auxiliary measuring point to the auxiliary

vanishing point.

Measuring the Incline

ere is an important difference between measuring a line parallel with the

ground plane and measuring a line angled to the ground plane. When

measuring inclines, the measuring line must tou the line being measured

(Figure 9.7). e geometry required to measure lines will be incorrect if this

requirement is not met (see Chapter 11). It is oen necessary to use a

reference point to reposition the measuring line.





Figure 9.7 Measuring one-point inclines. Creating a 30° incline (above), and

measuring a 4 unit length (below).

Downward Inclines

Downward inclines have an auxiliary vanishing point below the horizon line.

e steps are the same as upward inclines, except they are done upside-

down. Use the measuring point to establish the auxiliary vanishing point

(Figure 9.8). Plot the auxiliary measuring point (Figure 9.9). Draw the incline

(Figure 9.10). Measure the incline (Figure 9.11).

Figure 9.8 Use the measuring point to find the auxiliary vanishing point.



Figure 9.9 Create an auxiliary horizon line, then measure the distance from the

auxiliary vanishing point to the measuring point and transfer that distance to the

auxiliary horizon line.

Figure 9.10 is auxiliary vanishing point draws inclines at a 30° angle to the

ground plane.



Figure 9.11 Use the auxiliary measuring point to measure the incline. Horizontal

lines are parallel with the horizon line.



Figure 9.12 Two-point perspective auxiliary vanishing points are aligned with the

le or right vanishing point.



Two-Point Inclines

Auxiliary vanishing points are aligned with vanishing points on the horizon

line. In two-point perspective there is a le and a right vanishing point. So,

whi one should be used? Is the auxiliary vanishing point aligned with the

right vanishing point or the le vanishing point? It can be confusing. More

oices mean more opportunities to make mistakes. Fortunately, when a

mistake is made, it is usually obvious and the drawing looks amiss. When

this happens, it is time to reevaluate the oices made. With practice,

oosing the location of the auxiliary vanishing point becomes intuitive.

Until that time, there are guidelines to assist in their selection.

Placement

Auxiliary vanishing points can be above or below the le or right vanishing

point. As a guide, consider how inclines recede in space. ink about

diminution. ings closer to the viewer are larger; things farther away are

smaller. How forms behave in perspective gives important clues for correctly

locating the auxiliary vanishing point (Figure 9.12).

Another helpful hint in locating the auxiliary vanishing point is to

consider the incline’s axis. If the axis of an incline connects to the le

vanishing point, the auxiliary vanishing point must be above or below the

right vanishing point. Conversely, if the axis of an incline is aligned with the

right vanishing point, then the auxiliary vanishing point must be on the left

side (Figure 9.13).

Practice drawing inclines until confident with the correct positioning of

the auxiliary vanishing points. When comfortable that these points can be

properly located, it is time to draw specific angles.

Upward Inclines



Once the proper location of the incline’s vanishing point is determined, the

next step is to find the incline’s angle, or the degree of the slope.

Measuring points provide true angles for inclines. If the auxiliary

vanishing point is above or below the right vanishing point, use the right

measuring point to find the true angles. Conversely, if the auxiliary

vanishing point is above or below the le vanishing point, use the le

measuring point to find the true angles. For example, to draw a 30° incline

that tilts up and to the right, draw a true 30° angle from the right measuring

point (Figure 9.14).

Auxiliary Measuring Point

Establishing an auxiliary measuring point follows the same procedure used

in one-point perspective. Create an auxiliary horizon line. Measure the

distance between the auxiliary vanishing point and the measuring point.

Transfer that distance to the auxiliary horizon line (Figure 9.15).



Figure 9.13 Auxiliary vanishing points are always opposite to the axis of rotation.



Figure 9.14 Use the measuring point to find the location of the auxiliary vanishing

point.



Figure 9.15 Use a compass or ruler to establish the auxiliary measuring point.

Measuring Line

As with all inclines, the measuring line must tou the line being measured

(Figure 9.16).



Figure 9.16 To measure an incline, the measuring line must tou the line being

measured. is incline is 4 units long.

Downward Inclines

Downward inclines are approaed the same as upward inclines. Do the

same procedure upside-down (Figures 9.17–9.19).



Figure 9.17 Finding the auxiliary vanishing point.

Figure 9.18 To find the auxiliary measuring point, measure the distance from the

auxiliary vanishing point to the le measuring point, and transfer that distance to

the auxiliary horizon line.



Figure 9.19 When measuring the slope, ensure the measuring line toues the line

being measured. is incline is 4 units long.

An Alternative Method

One-Point Inclines

Oen, there are several methods to solve a perspective problem, ea with

its own advantages and disadvantages. Drawing steep inclines using

auxiliary vanishing points can be inconvenient, as the vanishing and

measuring points are oen beyond the edge of the paper. e following

alternative method is not an elegant solution, but it does keep all the points

on the paper.

Any incline can be thought of as a right-angled triangle (a triangle with a

90° corner). is right-angled triangle has a horizontal and a vertical leg. e

hypotenuse of the triangle is the incline (Figure 9.20).



Figure 9.20 is incline is a right-angled triangle. Its hypotenuse is 5 units long,

angled 30° from the horizontal leg.

Figure 9.21 First, draw an elevation view parallel with the picture plane using true

dimensions and the true angle of the incline.

In this alternative method, first draw an elevation view of the incline. is

elevation view has no perspective. It is drawn to scale, using true dimensions

(Figure 9.21).

e next step is to transfer the dimensions of the elevation view into a

perspective view. Use a measuring point to transfer the length of the

horizontal leg to a foreshortened line (Figure 9.22). Use the same measuring

point to transfer the height of the vertical leg into position (Figure 9.23).

Connect the ends of the two legs to create the incline (Figure 9.24).



Figure 9.22 Transfer the horizontal leg in perspective.

Figure 9.23 Transfer the vertical line in perspective.



Figure 9.24 Completing the incline.

Two-Point Inclines

Using the alternative method in two-point perspective follows the same

basic procedures as one-point. e difference being that the right or le

vanishing point is used instead of the center of vision. Draw the incline in an

elevation view, and then project those dimensions to a perspective view

(Figure 9.25).



Figure 9.25 Projecting the dimensions of an elevation view to a perspective view is

an alternative method to draw two-point inclines.
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Inclined Cuboids

e previous apter outlined the procedures to draw an inclined plane. A

plane has only two dimensions. is apter adds the missing dimension and

begins where Chapter 9 le off. As su, it is helpful to have a good

understanding of inclined planes before progressing to drawing inclined

cuboids.

One-Point Perspective

Draw a one-point perspective inclined plane (Figure 10.1). See Chapter 9 for

step-by-step instructions.



Figure 10.1 A one-point perspective inclined plane, 2 units wide, 5 units long, at a

36° incline.

Auxiliary Vanishing Point

A third dimension is extruded from this inclined plane. All the corners are

right angles. e thiness projects 90° from the inclined plane. To draw the

thiness, another auxiliary vanishing point is needed, a point 90° from the

original auxiliary vanishing point. us, the first step is to locate the point of

true angles—the measuring point. At the measuring point, draw a 90° angle

from the original auxiliary vanishing point. ere are now two auxiliary

vanishing points that are 90° apart (Figure 10.2).



Figure 10.2 e upper and lower auxiliary vanishing points are 90° apart at the

measuring point.



Any line drawn from the lower auxiliary vanishing point will create a 90°

angle to any line drawn from the upper auxiliary vanishing point (Figure

10.3).



Figure 10.3 Lines drawn from the lower auxiliary vanishing point are right angles

to lines drawn from the upper auxiliary vanishing point.



Measuring the iness

Establish measuring points as described in Chapter 9 (Figure 10.4).

Remember, the measuring line must tou the line being measured (Figure

10.5).

Figure 10.4 e distance from the auxiliary vanishing point to the measuring point

is the same as the distance from the auxiliary vanishing point to the auxiliary

measuring point.



Figure 10.5 Position the measuring line so that it toues the line being measured.

is illustration shows a length of 2 units.

Completing the Box

Connect the lines to the proper vanishing points to complete the box (Figure

10.6).



Figure 10.6 Connect lines to vanishing points to complete the box.

Inclined Two-Point Cuboids

Draw a two-point perspective inclined plane (Figure 10.7). See Chapter 9 for

step-by-step instructions.



Figure 10.7 e starting point is a two-point perspective inclined plane. It is 6 units

wide and 7 units long, tilting up from the ground plane at 45°.

Auxiliary Vanishing Points

Angled cuboids have three vanishing points: two auxiliary vanishing points

and one vanishing point located on the horizon line. e auxiliary vanishing

points are always aligned vertically. ey are above and below the le or

right vanishing point.



To draw 90° corners, the auxiliary vanishing points must be 90° apart. True

angles for inclines are found at the measuring point. Inclines to the le use

the le measuring point, and inclines to the right use the right measuring

point (Figure 10.8). A right angle drawn at the measuring point creates

auxiliary vanishing points that draw right angles in perspective (Figure 10.9).



Figure 10.8 A right angle at the measuring point creates two auxiliary vanishing

points 90° apart.

Figure 10.9 Project lines from the lower auxiliary vanishing point to create 90°

corners.



Measuring Point

Establish the auxiliary measuring point using the procedure outlined in

Chapter 9 (Figure 10.10). Measure the desired thiness of the box. Make

sure the measuring line toues the line being measured (Figure 10.11).



Figure 10.10 Measure the distance from the auxiliary vanishing point to the

measuring point and transfer that distance to the auxiliary horizon line.

Figure 10.11 e measuring line must tou the line being measured. is example

shows a length of 3 units.



Complete the Box

Connect lines to appropriate vanishing points to complete the box (Figure

10.12).

Figure 10.12 Connect lines to vanishing points to complete the box.
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Incline Geometry

Chapter 6 explored the geometry of measuring points, the importance of

isosceles triangles, and how measuring points draw isosceles triangles in

perspective. Auxiliary measuring points also draw isosceles triangles, the

only difference being that the isosceles triangle is at an incline. If the line

being measured is parallel with the ground plane, the isosceles triangle is

also parallel with the ground plane (Figure 11.1, top). If the line being

measured is inclined, the isosceles triangle is also inclined (Figure 11.1,

boom).

It has been stated several times that, when measuring inclines, the

measuring line must tou the line being measured. is, however, is not the

case when measuring lines parallel with the ground plane. Why the

aberration?

Lines drawn from auxiliary vanishing points are angled to the ground

plane. Likewise, lines drawn from auxiliary measuring points are also angled

to the ground plane. Lines drawn from the auxiliary measuring point would,

if extended, follow a path underground. If the measuring line did not tou

the line being measured, the line projected from the auxiliary measuring

point would never contact the measuring line. Because of this, it is necessary

for the measuring line to be in a very specific location—touing the line

being measured (Figure 11.1). If the measuring line is not already touing

the line being measured, the measuring line must be moved so that it does.



Figure 11.1 Measuring points located on the horizon line create isosceles triangles

parallel with the ground plane (top). Auxiliary measuring points create isosceles



triangles at an angle to the ground plane (bottom).

Vertical Auxiliary Measuring Points

In previous examples, the auxiliary measuring point was placed on an

auxiliary horizon line (Figure 11.2, line “C,” inset). Yet, auxiliary measuring

points do not need to be on the auxiliary horizon line; there are many places

the measuring point can be sited. Oen, the most convenient location is on a

vertical line, the line connecting the two auxiliary vanishing points (Figure

11.2, line “B,” inset). However, no maer where its location, a measuring

point must always draw isosceles triangles. For this to happen, the geometry

must be correct. For the geometry to be correct, an important rule must be

followed.



Figure 11.2 e auxiliary measuring point can be on a vertical line as well as a

horizontal. e distance from the measuring point to the auxiliary vanishing point

(Line “A”) must be the same as the distance from the auxiliary vanishing point to

the auxiliary measuring point (Line “B” or “C”).



e relationship between a measuring point and the measuring line is

critical. For a measuring point to draw an isosceles triangle, the measuring

line must be parallel with the line the measuring point is on. If the

measuring point is on a horizontal line (e.g., the horizon line, or the auxiliary

horizon line) the measuring line must also be horizontal. If the measuring

point is on a vertical line, the measuring line must also be vertical (Figure

11.3).



Figure 11.3 e measuring line must be parallel with the line the measuring point

is on. If the measuring point is on a vertical line, the measuring line must also be

vertical.



Figure 11.4 A box measuring 3 units high 4 units wide, and 2 units deep at a 35°

incline.

e primary advantage of placing the measuring point on a vertical line is

its proximity. Inclines oen lead to points beyond the page’s border. If the

auxiliary vanishing point is off the page, the auxiliary measuring point will

be even farther away. Placing the measuring point on a vertical line keeps

the measuring points close at hand.

To demonstrate this, draw a box that is 3 units tall, 4 units wide, and 2

units deep, inclined at a 35° angle (Figure 11.4).

Using a vertical measuring point (VMP) and vertical measuring line,

measure the height and width (Figures 11.5–11.6). en connect the lines to

the appropriate vanishing points to complete the box (Figure 11.7).



Figure 11.5 Using a vertical measuring point and a vertical measuring line to

measure a 3 unit length.



Figure 11.6 Using a vertical measuring point and a vertical measuring line to

measure a 4 unit length.



Figure 11.7 Connect corners to vanishing points to complete the box. Use the

horizontal measuring line to measure the depth (2 units).



More on Measuring Point Geometry

Measuring points can be on horizontal lines or vertical lines. ese are the

two most logical and practical locations. Placing them elsewhere is not

advised—but it is possible.

e measuring point can be anywhere, if two crucial rules are adhered to:

1) the measuring point must be the same distance from the vanishing point

as the vanishing point is from the station point; and 2) the measuring line

must be parallel with the line the measuring point is on. If these two rules

are followed, the measuring point will draw an isosceles triangle (Figures

11.8–11.10).

Figure 11.8 e measuring point can be placed to the right or the le of the

vanishing point. Both measuring points draw isosceles triangles. Both can be used

to measure lines that connect to the le vanishing point.



Figure 11.9 Measuring points can be on a vertical line, but the measuring line must

also be vertical.



Figure 11.10 Measuring points can be on a diagonal line, if the measuring line is at

the same angle.
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e Problem of Distant Vanishing Points

When ploing vanishing points, they can, from time to time, fall off the

page, sometimes very far off the page. Before buying a very long desk and

ruler, and taping paper together end to end, there is another solution. It

borrows a page from the grid approa to perspective.

e Grid Approa

If the vanishing point is off the page, create a grid directing the lines to that

distant point. is grid is based on the fact that evenly spaced parallel lines

remain proportional as they recede.

Figure 12.1 Creating a grid to find a vanishing point off the page.



e line drawn from the station point leads to a vanishing point far off the

page. Knowing this, divide the distance between that line and the horizon

into evenly spaced segments. e number of divisions used are at the artist’s

discretion. e more divisions, the tighter the grid (Figure 12.1). is grid

serves as a guide to the distant vanishing point. Once the grid is in place, use

it to gauge the direction of diminution. Create as fine a grid as needed to

guide the drawing (Figure 12.2).

Figure 12.2 Drawing a box using the grid. e grid creates a guide. Align the

foreshortened lines of the object to the grid.

Shortcut

To save some time—and some lines—here is a shortcut. Instead of dividing

the length of ea line into a series of even spaces, divide the line in half.

Continue to divide into halves until there are enough lines to do the job.

Oen only a few lines are needed (Figure 12.3).



Figure 12.3 is shortcut is a fast and simple way to create a grid.

Measuring

Foreshortened lines are now able to be drawn without a vanishing point.

Next, a way to measure those lines is required. But without the vanishing

point, how is the measuring point located? ere are a few solutions. is

first method is a three-step process. First, measure the distance from the

station point to the center of vision. en transfer that distance to the line

connecting the station point to the vanishing point. From this intersection,

draw a right angle, projecting it to the horizon line (Figure 12.4).



Figure 12.4 Finding a measuring point without using a vanishing point.

Inclines

is method is useful when working with inclines, where the auxiliary

vanishing point is oen off the page. e procedure is the same, but the

diagram is turned 90°. is method necessitates the auxiliary measuring

point being on a vertical line (Figure 12.5).



Figure 12.5 Using a grid to access a distant auxiliary vanishing point. e auxiliary

measuring point is on a vertical line, so the measuring line will also need to be

vertical.



Using a Protractor

An alternative method to locating the measuring point is using a protractor.

e measuring point is half way (in degrees) between the center of vision

and the vanishing point. For example, if the angle between the line of sight

and the right vanishing point is 24° then the measuring point is at 12° (Figure

12.6).

Figure 12.6 Using a protractor to find a measuring point.
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Falling and Rotating Forms

Auxiliary vanishing points can be daunting. Practice simple planes first, then

advance to three-dimensional forms. When comfortable drawing inclines at

various angles, apply that knowledge to more elaborate scenes. Try

incorporating several objects in a drawing, relating one object’s movements

to another.

Rotating Objects Example

Figure 13.1 e final drawing. A sequence of three boxes, ea 1 unit tall, 2 units

long, and 2 units deep, along a curved trajectory.



Here is an example combining information from Chapter 8 and Chapter 10.

In this example, a curved line will be drawn in perspective, with a series of

three objects rotating along that curve. ey are spinning while they travel

along a curved trajectory (Figure 13.1). is is more ambitious than previous

examples, but there is nothing new in this series—the information has been

covered before. Since mu of this apter is combining previous

procedures, prior pages are referenced when appropriate.

e Axis Point

Assuming an object is balanced, and not heavier on one side, it will rotate

along a central axis. To accurately measure the object, it must be measured

from the axis point (the center of the box).

e Angles

e box is 1 unit high, 2 units long, and 2 units deep. Ea sequence is

separated by 20°. e first box rotates 40° counterclowise, the second 80°,

and the third 120°. It is helpful to draw an elevation view of complicated

inclines, as it gives a visual of the true angles (Figure 13.2). is drawing may

seem onerous, but drawing an angled box is no more difficult than drawing

one angled line. Similarly, drawing three angled boxes is as easy as drawing

one angled box. Draw this series one box at a time, and draw ea box one

line at a time.



Figure 13.2 It is helpful to draw an elevation view of complicated scenarios. ese

are the angles and dimensions of the falling, rotating box.

e Arc

Begin by drawing the arc. is is the path the boxes will follow. e center

of ea box is aligned with this curve (Figure 13.3). Refer to Chapter 8,

Figure 8.27.

Auxiliary Vanishing Points

Aer the arc and the center of all three boxes are ploed, the next task is to

locate the auxiliary vanishing points. Ea box is at a different angle, so ea

box will need a different pair of auxiliary vanishing points (this is best done

on separate overlays). When drawing inclines, true angles are found at the

measuring point. It is helpful to think of the measuring point as an elevation

view of the incline. Place the angles given in the following instructions on

the measuring point. en project those angles to create auxiliary vanishing

points (Figure 13.4).



Figure 13.3 Drawing the arc of travel, and the center points of ea box (see for

Figure 8.27 another example of plotting points along a curved line).



Figure 13.4 Auxiliary vanishing point angles for ea box.

Bottom Box

Start with the box closest to the viewer—the boom box. is box is tilted at

a 60°/30° angle to the ground plane (Figure 13.4, top). From the measuring



point, project a 30° angle to find the upper auxiliary vanishing point. en,

project a 60° angle to find the lower auxiliary vanishing point (Figure 13.5).

Figure 13.5 e box closest to the viewer is angled 60°/30° from the ground plane.

Place those same angles at the measuring point.

Auxiliary Measuring Points

Next, establish the auxiliary measuring points (Figure 13.6). To save space,

use vertical measuring points. Refer to Chapter 11, Figure 11.2.



Figure 13.6 Placing the auxiliary measuring point on a vertical line keeps it nearby.

e lower auxiliary vanishing point is off the page. Use the tenique

outlined in Chapter 12, Figure 12.4 to compensate for this plight (Figure

13.7).



Figure 13.7 Establishing a vertical auxiliary measuring point when the auxiliary

vanishing point is too far to rea.

Measuring Depth

e depth is 2 units. Measure from the center of the box, 1 unit on ea side

of the axis point. If using a vertical measuring point, make sure the

measuring line is also vertical and positioned at the axis point of the box,

touing the line being measured (Figure 13.8).



Figure 13.8 Measuring 2 units along the center plane.

Measuring Height

e height is 1 unit. Since the lower auxiliary vanishing point is off the page,

use the tenique outlined in Figure 12.3 to create a grid. e grid assists in

guiding the direction of the lines. Make the grid as tight as needed (Figure

13.9).



Figure 13.9 Create a grid to guide lines to the lower auxiliary vanishing point. See

Chapter 12 for step-by-step instructions.

Measure 0.5 units on ea side of the axis point (Figure 13.10).



Figure 13.10 Measure 0.5 units on ea side of the zero point to establish the

height.

Complete the Box

Connect corners to vanishing points to complete the box (Figure 13.11).



Figure 13.11 Connect to vanishing points to complete the box.

Middle Box

e middle box is drawn in the same fashion as the first. e steps are the

same. However, the measuring line must be moved ba in space (in

perspective). e measuring line must tou the center (axis point) of the

box being measured.

In this case, to measure the depth, place the auxiliary measuring point on

a horizontal line. It is closer and more convenient than placing it on a

vertical line (Figure 13.12). It is useful to have options. To complete this box,

follow the same steps used to draw the previous box (Figure 13.13).



Figure 13.12 For the middle box a horizontal measuring line was used for the depth

(2 units), and a vertical measuring line was used for the height (1 unit).

Top Box

When drawing the top box, repeat the process used to draw the boom box.

Use vanishing points and measuring points that correspond to the 50° and 40°

angles (Figure 13.13).



Figure 13.13 e completed boxes.
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Tilted Tapered Forms

A tapered cup is simple when upright (Figure 8.16). When it tips over, it is

not so simple. A tapered cup on its side creates some allenging angles, as

well as an opportunity to practice ellipses.

e Cup

As an example, use the cup drawn in Figure 8.16. e cup is 1.5 units tall. e

diameter of its base is 1 unit and the diameter of its top is 2 units. It may be

worth reviewing Chapter 9, as this apter builds on that information. Keep

in mind that there are several ways to solve this problem. Understanding the

geometry of perspective reveals a myriad of solutions. When several

resolutions to the same problem can be conceived, the power of angles is

beginning to be understood.

Elevation View

As pointed out previously, it is prudent to draw an elevation view of

complicated inclines. An elevation view gives insight to the angles that will

need to be drawn. e cup, when on its side, creates a 72° angle (rounded

off) from the ground plane to its base (Figure 14.1).



Figure 14.1 e angles and dimensions needed to draw the cup are best shown in

an elevation view (le). e completed drawing is illustrated (right).

Base

e base’s diameter is 1 unit. First, draw a 1 unit square, tilted 72°. en

draw an ellipse inside the tilted square (Figure 14.2). Review Chapter 8 for

methods to draw an ellipse.



Figure 14.2 Using the le measuring point, create a 72° incline.

Height

e cup is 1.5 units tall. e centerline of the cup is 90° from the base. To

draw the centerline, first plot an auxiliary vanishing point 90° from the

vanishing point of the base (Figure 14.3). Use this auxiliary vanishing point

to draw the centerline of the cup.



Figure 14.3 Draw a centerline 90° from the base.

To measure the height, establish an auxiliary measuring point and a

measuring line parallel with the line the measuring point is on.

e measuring line must be moved so that it toues the centerline. ere

are many paths to do this. is example uses the 72° auxiliary vanishing

point to project the measuring line up. en, the right vanishing point is used

to project the measuring line baward until it toues the centerline (Figure

14.4).



Figure 14.4 Measure the cup’s height (1.5 units) by relocating the measuring line.

It must tou the line being measured.

Top

e 1.5 unit centerline establishes the middle of the cup’s top. e cup’s top

has a radius of 1 unit. Measure out from the center, 1 unit on ea side, to

create a 2 unit square, then draw an ellipse (Figure 14.5).



Figure 14.5 ere are several steps in this illustration. First, find the point where

the top of the cup toues the ground. Measure 1 unit on ea side of this point.

Project a diagonal line from the bottom le corner through the center point, until

it intersects the top right corner of the square. Draw an ellipse.

Finish

Connect the ends of the two ellipses to finish the cup (Figure 14.6).



Figure 14.6 Connect the ellipses to complete the cup.
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Perspective in the 1400s

e measurement system that has been used thus far is not the only way to

draw in perspective: there is an alternative to drawing isosceles triangles.

is method does not use measuring lines and measuring points. e

arocento artists approaed perspective by projecting the object being

drawn to the picture plane using the visual pyramid (lines drawn to the

viewer’s eye). Today this method is called “plan/elevation view perspective.”

It utilizes teniques that can be traced directly to Leon Baista Alberti. e

plan/elevation view diagram used today is arranged differently, but the

procedure has not anged in 600 years. As a direct descendant of the first

perspective diagram, plan/elevation view perspective presents an

opportunity to discuss some history, and explain perspective’s evolution.

Exploring this 600-year-old procedure segues seamlessly into the modern

measurement system. So, this apter begins by outlining how perspective

originated.

Fillipo Brunellesi is the founder of perspective. In 1413 he painted the

first image to fully adhere to its rules. Leon Baista Alberti was the first to

diagram this approa, publishing his book On Painting in 1435, and

introducing perspective to the world. e creative milieu did not

immediately adopt this new procedure. Artists had been painting for

hundreds of years without perspective teniques. Change is difficult, as is

perspective. Many ignored the arduous guidelines. Others, however,

embraced the new tenology.

To understand the artists’ emotional response to perspective’s arrival, look

no further than a few decades ago. In many ways, the history of the

computer mirrors the history of perspective. When these electronic

instruments arrived in the art world of the 1980s, they were slow and foreign

to artists accustomed to traditional tools. Many rejected these glowing

boxes, considering them a temporary irritation, a passing fad. ey



forecasted the day consumers would tire of the digital look, and long for the

return of the personal tou. is novelty would soon fade, they thought.

Others, however, were excited—even giddy—about the possibilities of these

new contraptions. ey saw their potential.

Computers prevailed and are now the standard in commercial art

production. Eventually, perspective theory also prevailed. Understanding and

properly executing perspective soon became orthodox. at is, until modern

art dethroned the depiction of representational space. Perspective, however,

remains a valuable skill. Computers have not eliminated the need for

understanding the geometry of vision.

Perspective, from the beginning, was rooted in geometry. arocento

artists did not rely on angles. ey did, however, have a solid understanding

of how the picture plane worked— how lines, projected from the object to

the viewer’s eye, would create an accurate image of reality at the

intersection of the picture plane. ey cleverly used this knowledge to

construct a diagram that took advantage of this insight. is diagram gave

artists something they never had: a way to draw with accuracy.

Alberti’s measuring methods

Width

Once artists discovered that parallel lines connect to a vanishing point,

measuring horizontal dimensions was relatively easy. Horizontal lines are

not foreshortened, they are parallel with the picture plane. ey can be

measured with a ruler (Figure 15.1). Measuring depth is triier.



Figure 15.1 Evenly spaced horizontal lines receding in space.

Depth

Depth is foreshortened. It can’t be measured directly with a ruler. In the

previous apters, an isosceles triangle was used to measure foreshortened

lines. e arocento artists approaed it differently—they used an

elevation view to plot depth. Drawing the intersection of the visual pyramid

on the picture plane projected the foreshortened line to a flat surface (Figure

15.2).



Figure 15.2 Using an elevation view to define depth.

One-Point Diagram

So, now that width can be defined using an elevation view from the front,

and depth defined using an elevation view from the side (Figure 15.1 and

Figure 15.2), combining the two views gives the foundation of Alberti’s 600-

year-old perspective diagram (Figure 15.3). A perspective view of this

diagram may beer explain the relationships (Figure 15.4). Alberti’s diagram

creates a one-point perspective grid.

Figure 15.3 Combining the two elevation views into one diagram.

Figure 15.4 A three-dimensional view of Figure 15.3.



One-Point Grid

e intersections at the picture plane define depth. Project the intersections

horizontally to create a grid (Figure 15.5).

Figure 15.5 A one-point perspective grid using Alberti’s 1435 diagram.
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Plan/Elevation View Perspective

e Diagram

Alberti used two elevation views: an elevation view from the front (for

width), and an elevation view from the side (for depth). A more

contemporary approa is to use a plan and an elevation view. e theory is

the same; the configuration is different.

A plan view is a view from above. It shows the station point and its

distance to the picture plane. e elevation view is a view from the front. It

shows the horizon line, the center of vision, and the ground line (because

there is no measuring, the measuring line is now called a ground line)

(Figure 16.1).



Figure 16.1 Plan and elevation views. On the le is a three-dimensional view. On

the right is how this view is represented on paper.

Station Point

e distance from the station point to the picture plane determines how

large the cone of vision will be. e farther away the viewer is from the

picture plane, the larger the cone of vision (the station point is oen placed

below the elevation view to allow for a large image area).

Ground Line

What was called the measuring line is now called a ground line. e ground

line is located at the picture plane and determines the viewer’s eye level. e

closer the ground line is to the horizon line, the lower the eye level.

e Object

e plan view displays the top of the object (this gives the width and depth);

the elevation view displays the front of the object (this gives the height)

(Figure 16.2).



Figure 16.2 A cube in plan and elevation view, in three- and two-dimensional

views.

e Drawing

With the elevation and a plan view in place, it is time to create the drawing.

Alberti superimposed the two elevation diagrams, puing one on top of the

other. e modern approa is a lile different: the plan view is separated

from the elevation view. e plan view is traditionally placed at the top of

the paper, with the elevation view placed below. It does not maer how far

apart the diagrams are, but the center of vision in the elevation view must

be aligned with the station point below (Figure 16.3).



Figure 16.3 e plan view is placed above the elevation view. e station point and

center of vision must be aligned.

e box in this example is in one-point perspective. is is shown by its

position relative to the picture plane. e box in the plan view and the box

in the elevation view are the same object, therefore the plan and elevation

view must be drawn to the same scale. If there are several objects to draw,

the size and positioning of ea object must also be to scale.

Elevation View

Foreshortened lines in one-point perspective connect to the center of vision

(Figure 16.4).



Figure 16.4 Connect foreshortened lines to the center of vision.

Plan View

To measure the depth, draw a line from the ba of the box to the station

point. Where this line intersects the picture plane, project downward to the

ground plane, defining the ba of the box (Figure 16.5).



Figure 16.5 Measure depth by plotting its intersection on the picture plane.

is is how to draw a box using the plan and elevation method. No

measuring points or measuring line was used, and all dimensions were

projected to the picture plane. Now try to do another one-point view with a

different shape, in a different position.

Objects Not Touing the Picture Plane

When a one-point box toues the picture plane, height and width are actual

size. In this next example, the box is behind the picture plane. Begin by

drawing the diagram. Place the elevation view of the box to the right of the

image area. It is usually more convenient— especially when drawing several

objects—to place the elevation view on the right side of the paper. is keeps

the diagram less cluered (Figure 16.6, boom).



Figure 16.6 Plan and elevation diagram showing a cube in one-point perspective. In

the elevation view, the cube is placed to the right of the image area.

Width

Project the width to the picture plane, then drop that distance to the ground

line. Any point not touing the picture plane must first be projected to the

picture plane, before being drawn to the ground (Figure 16.7).



Figure 16.7 Plot the width of the cube by projecting it to the picture plane and then

to the ground line.

Depth

Determine depth by drawing a line from the object’s corners to the station

point. Plot the intersection at the picture plane, then project the intersection

to the ground (Figure 16.8).



Figure 16.8 Use the station point to plot the depth of the cube.

Height

e elevation view displays the true height at the picture plane. is

dimension must be projected ba in space if the object being drawn does

not tou the picture plane (Figure 16.9).



Figure 16.9 Plot the height of the cube using the elevation view.

Two-Point Plan/Elevation

Finding Vanishing Points

Objects in two-point perspective are angled to the picture plane. ese

angles can be seen in the plan view. e placement of the right and le

vanishing points must reflect the angle of the object being drawn. Since

angles at the station point are true angles, the lines projected from the

station point must be parallel with the angles of the object. Where the lines

intersect the picture plane, drop them to the horizon, creating a le and right

vanishing point (Figure 16.10).



Figure 16.10 Establish vanishing points by drawing lines parallel with the object in

the plan view.

e Drawing

As in one-point perspective, lines that do not tou the picture plane must be

projected to the picture plane. Once the line toues the picture plane, it is

then dropped down to the ground line. From the ground line, connect the

lines to their respective vanishing points. e intersection of the two angles

indicates the front corner of the box (Figure 16.11).



Figure 16.11 e intersection of the two lines defines the location of the box’s

front corner.

Depth

In the plan view, draw a line from the le and the right corner of the box to

the station point. Use the intersection at the picture plane to define the depth

of the box (Figure 16.12).



Figure 16.12 To determine depth, draw a line to the station point intersecting the

picture plane, then drop these lines to the box.

Height

Height is determined from the elevation view. Project the height across the

picture plane, then baward using a vanishing or reference point (Figure

16.13).

Connect lines to vanishing points to finish the box.



Figure 16.13 Use the elevation view to establish the height. Connect lines to

vanishing points to finish the box.

e Problem of Distant Vanishing Points

If a right or le vanishing point is far off the page (Figure 16.14), the two-

point object can be drawn using one-point teniques. Any single point may

be found using one-point perspective. Once the distant corner is found,

connect the dots (Figures 16.15–16.17).



Figure 16.14 e right vanishing point is too far away to plot comfortably.



Figure 16.15 Use one-point perspective teniques to draw the right front corner of

the box. Any point in space can be found using one-point perspective.



Figure 16.16 Use the same tenique to draw the ba corner of the box.



Figure 16.17 Connect the dots to complete the box.
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ree-Point Perspective

ree-point perspective is defined by the center of vision. In one- and two-

point perspective, the line of sight is parallel with the ground plane; the

center of vision is focused on the horizon line. In three-point perspective, the

line of sight is angled to the ground plane; the center of vision is above or

below the horizon line. To put it simply, the viewer is looking up or looking

down in three-point perspective. If the viewer is looking up (a “worm’s-eye”

view), the center of vision is above the horizon line. If the viewer is looking

down (a “bird’s-eye” view), the center of vision is below the horizon line

(Figure 17.1). All lines are foreshortened in three-point perspective, and none

are parallel with the picture plane.



Figure 17.1 e viewer is looking up or down in three-point perspective.

In three-point perspective, there are a myriad of variables. When

considering the relationship of the viewer to the vanishing points and the

object being drawn, the possibilities seem endless. It is not possible to

address all the situations that might be encountered. However, the following

apters give a foundation that enables the artist to arrive at solutions to

problems not covered in this book. Before addressing the more obscure and

allenging aspects of three-point perspective, begin by seing up a basic

three-point diagram. is is a generic set-up. Variations will be discussed

later, as well as how to tailor the diagram to specific circumstances.



ree-Point Perspective Components

Picture Plane

e picture plane must be at a right angle to the line of sight. erefore, in

three-point perspective, the picture plane is angled to the ground plane

(Figure 17.2).

Figure 17.2 e picture plane is at a right angle to the line of sight.

Vanishing Points

Predictably, there are three of them: a right vanishing point, a le vanishing

point, and a vertical vanishing point (VVP). If the object’s angle to the picture

plane is of no concern or is unknown, or the orientation of the line of sight to

the ground plane is unknown, the three vanishing points can be located

anywhere—well, almost anywhere. ere are three caveats to keep in mind:

the vertical vanishing point must be between the right and le vanishing



point; the horizon line must be horizontal; and the angle at the vertical

vanishing point must be less than 90° (Figure 17.3). Within these guidelines,

there are many different configurations possible. How to oose the right

configuration for specific needs will be covered later in this apter. Until

then, construct a generic three-point diagram with randomly placed

vanishing points.



Figure 17.3 Follow these guidelines for the proper placement of vanishing points.



e Diagram

e following steps describe the construction of a bird’s-eye view. e steps

for a worm’s-eye view are the same, only upside-down. A worm’s-eye view

diagram is a bird’s-eye view diagram turned 180°.

Center of Vision

Once the three vanishing points have been established, the location of the

center of vision is predetermined. Its position is dictated by the geometry.

First, draw three lines (reference lines) at right angles from the lines

connecting ea vanishing point: a le reference line (LRL), a right reference

line (RRL), and a vertical reference line (VRL). e reference lines connect to

the le vanishing point, right vanishing point, and the vertical vanishing

point respectively. ese three reference lines intersect at the same spot, at

the center of vision (Figure 17.4).



Figure 17.4 e location of the center of vision is at the intersection of the three

reference lines.



e intersection of ea reference line with their orthogonal creates a

reference point: a le reference point (LRP), right reference point (RRP), and

a vertical reference point (VRP). ese reference points are needed to locate

the station points.

Station Points

Ea vanishing point has a dedicated station point. e le station point

(LSP), right station point (RSP), and vertical station point (VSP) are necessary

to locate measuring points and define the cone of vision.

Le Station Point

Like the center of vision, the location of the station points is predetermined.

Finding the station points can be a lile triy. First, from the center of

vision, draw a line 90° from the le reference line (Figure 17.5).



Figure 17.5 From the center of vision, project a right angle from the le reference

line.



Here is the triy part. From the center of vision, a line needs to be

triangulated between the le vanishing point, the le reference point, and

the line drawn in Figure 17.5. A triangle is the best tool for this job. e le

reference point is at the intersection of the le reference line and the

orthogonal. e station point’s location can vary depending on the diagram.

Its placement is determined by the angles created in this procedure. Follow

them carefully (Figure 17.6).

Figure 17.6 Use a triangle to locate the le station point.

Le Measuring Point



Measure the distance from the le vanishing point to the station point, and

transfer that distance to the horizon line using a compass or a ruler. e

distance from the vanishing point to the station point is the same as the

distance from the vanishing point to the measuring point (Figure 17.7).



Figure 17.7 Measure the distance from the le vanishing point to the le station

point. Transfer that distance to the horizon line.



Right Measuring Point

Use the right reference line to locate the right station point (Figures 17.8–

17.9). Transfer the distance from the station point to the horizon line (Figure

17.10).



Figure 17.8 At the center of vision, extend a line 90° from the right reference line.



Figure 17.9 Triangulate the right vanishing point, the right reference point, and

the right station point.



Figure 17.10 Measure the distance from the right vanishing point to the right

station point and transfer that distance to the horizon line.



Vertical Measuring Point

Use the vertical reference line to locate the vertical station point (Figures

17.11–17.12). Measure the distance from the vertical vanishing point to the

vertical station point. Transfer that distance to the line that connects the

vertical vanishing point to the le vanishing point. e vertical measuring

point is not on the horizon line (Figure 17.13).



Figure 17.11 Extend a line 90° from the vertical reference line.



Figure 17.12 Triangulate the vertical vanishing point, the vertical reference point,

and the vertical station point.



Figure 17.13 Measure the distance from the vertical vanishing point to the vertical

station point. Transfer that distance to the line connecting the le vanishing point

to the vertical vanishing point.



Figure 17.14 e station point is positioned in three different locations.



e Shortcut

It may seem strange that there are three station points—and it should. e

station point represents the viewer, and there is only one viewer. So why are

there three station points? e answer is simple: there are not three station

points. Ea station point is the same point. e le, right, and vertical

station points are all equal distance from the picture plane. Ea represent

the same point in space. e same station point has been placed in three

different locations, enabling it to find three different measuring points

(Figure 17.14).

is shortcut is based on all three of the station points being equal

distance from the picture plane. Locate one station point, and then repeat

that distance to find the others. Aer finding the first station point, use a

compass to find the other two (Figure 17.15). en add the measuring points

using the previously described method (Figure 17.16).



Figure 17.15 is shortcut for locating station points saves time and uses fewer

lines.



Figure 17.16 e distance from the station point to the vanishing point is the same

as the distance from the vanishing point to the measuring point.

Cone of Vision



e cone of vision is, as always, 60°. Any station point can be used to

determine the cone of vision (Figure 17.17). e le, right, or vertical station

point will all give the same result.



Figure 17.17 To establish the cone of vision, draw a 60° angle from the station

point.

Measuring Line

ere are two measuring lines in three-point perspective: a horizontal and a

vertical measuring line. e horizontal measuring line (HML) is used for

measuring lines parallel with the ground plane. e vertical measuring line

(VML) is used for measuring lines perpendicular to the ground plane. For the

geometry to be correct, it is critical that the measuring line is parallel with

the line the measuring point is on. e right and le measuring points are on

the horizon line, so the measuring line must be horizontal. e vertical

measuring point is on an angled line so the measuring line must be at the

same angle. A line perpendicular to the right reference line will be parallel

with the line the measuring point is on. e line the right station point is on

becomes the vertical measuring line (Figure 17.18).



Figure 17.18 e placement of measuring lines completes the diagram.



Congratulations—the three-point perspective diagram is finished. Now it is

time to draw something.

Drawing a Cube

For the first three-point example, draw a 5 unit cube, its front corner

touing the picture plane and tangent to the center of vision.

Horizontal Dimensions

Measuring horizontal lines (the top of the box) in three-point perspective is

done exactly the same as in two-point perspective (Figure 17.19). e same

rules apply. Confirm that what is being measured and the measuring line are

on the same plane. is can be triy in three-point perspective, as the

measuring line is not always on the ground.



Figure 17.19 Measuring horizontal dimensions in three-point perspective is no

different than measuring horizontal dimensions in two-point perspective.

Vertical Dimensions



All vertical lines connect to the vertical vanishing point. To measure these

lines, use the vertical measuring line and the vertical measuring point. In this

example, the line being measured is the vertical reference line.

From the center of vision, count 5 units along the vertical measuring line.

en, using the vertical measuring point, project that dimension to the

vertical reference line. Connect to the vertical measuring point, intersecting

the vertical reference line. is intersection represents 5 units in perspective

(Figure 17.20).



Figure 17.20 Use the vertical measuring point to measure vertical dimensions. is

is a 5 unit cube.

e vertical measuring point is used for all vertical measurements. It is

critical that the object being measured is on the same plane as the measuring

line. When measuring vertical dimensions, this can be difficult to determine.



A safe bet is to use the vertical reference line for all vertical measurements.

e vertical reference line is always on the same plane as the vertical

measuring line. Measure the height along the vertical reference line, then

project that distance (using a vanishing point or reference point) to its

desired location. is takes some practice.

Ground Plane

In Figure 17.20, the top of the cube is at the level of the horizontal measuring

line. It is 5 units above the ground plane. If the horizontal measuring line is

on the ground plane, measure vertical dimensions up instead of down. e

measurements are still along the vertical measuring line, still projected to the

vertical measuring point, and still placed along the vertical reference line.

Now the bottom of the box is on the same plane as the horizontal measuring

line, and the top of the box is 5 units above (Figure 17.21).



Figure 17.21 Measuring above the horizontal measuring line follows the same

procedures as measuring below the horizontal measuring line. e shaded area

represents the part of the box that is behind the picture plane.

Worm’s-Eye View



A bird’s-eye view diagram turned upside-down becomes a worm’s-eye view

diagram. e diagram is the same, only rotated 180°. All the guidelines for

constructing the diagram and for measuring objects still apply. When

drawing a worm’s-eye view there are, however, a couple of issues to keep in

mind when measuring and establishing the ground plane.

Establishing the Ground Plane

Measuring Width

e horizontal measuring line is tangent to the center of vision. e center of

vision, being above the horizon line, requires that all horizontal

measurements take place above the ground plane (Figure 17.22). For

example, if the horizontal measuring line is 4 units above the ground plane,

make all the horizontal measurements at that level.



Figure 17.22 is 5 unit square is drawn on the same plane as the measuring line.

Measuring Height



For an object to be siing on the ground (as opposed to floating above the

ground), its base must be at or below the horizon line. Once the width and

depth of the object has been established, measure down to the ground plane.

e ground plane can be located anywhere. e farther that is measured

down, the higher the horizontal measuring line will be. How tall the object is

decides where the ground is (Figure 17.23).



Figure 17.23 e top of this box and the horizontal measuring line are 4 units

above the ground plane.

All of the previous examples have had the corner of the box touing the

center of vision. Before moving on, here is an example where the box is in a

different location. e plan and elevation views describe its position (Figure

17.24).



Figure 17.24 Horizontal dimensions are measured at the level of the horizontal

measuring line. Vertical dimensions are measured along the vertical reference line

and then projected to their desired location.
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ree-Point Angles

Now that the basics of three-point perspective have been covered (as

unlikely as it may seem— yes, that was only the basics), vanishing points can

be found and objects can be measured. But, using this knowledge, all objects

would be parallel with ea other. To draw objects at different angles

requires different vanishing points. e following explains how to find them.

Le, Right, and Vertical Axes



Figure 18.1 An object can rotate along three axis points.

An object can turn in three directions: along a vertical axis, a right axis, or a

le axis. is coordinates with the vertical, right, and le vanishing points.

e Cartesian coordinate system of X-, Y-, and Z-axis can be confusing when

working with three vanishing points, so the terms le, right, and vertical will

be used instead (Figure 18.1). ese angles will be taled one at a time.

Vertical Axis



As an object turns on a vertical axis, the le and right vanishing points

ange position. In one- and two-point perspective, the station point is used

to find new vanishing points. ree-point perspective is different: the station

point cannot be used. A different point is needed, a point of true angles, 90°

from the le and right vanishing points. From this point, new le and right

vanishing points can be found. is point is referred to as a vertical axis

point (VAP). It is located on the vertical reference line, 90° from the right and

le vanishing points. Use a triangle to draw a 90° corner along the vertical

reference line. Make sure the legs of the triangle connect to the le and right

vanishing points. To establish new le and right vanishing points, use this

point as a station point when drawing in two-point perspective (Figure 18.2).



Figure 18.2 True angles for all horizontal lines are found at the vertical axis point.

Vanishing Points

Any angle drawn from the vertical axis point creates a vanishing point that

draws that same angle in perspective. For example, to rotate a box  20°

clowise, draw a true 20° angle at the vertical axis point, and project that

angle to the horizon line (Figure 18.3).



Figure 18.3 Angles projected from the vertical axis point create vanishing points

that draw those same angles in perspective. ese two new vanishing points are

rotated 20° clowise.

Measuring Points

New measuring points are needed for the new vanishing points. Measure the

distance from the new vanishing point to the vertical axis point, and then

project that distance to the horizon line (Figure 18.4). Measure width using

the same procedures as in two-point perspective (Figure 18.5).



Figure 18.4 To locate measuring points, measure the distance from the vanishing

points to the vertical axis point. Transfer that distance to the horizon line.



Figure 18.5 Measuring horizontal lines is accomplished using the same tenique

as two-point perspective.



One-Point Objects

If an object continues to turn along a vertical axis, eventually one side will

be parallel with the picture plane (Figure 18.6).

is is a one-point object viewed in three-point perspective. Lines parallel

with the picture plane have no vanishing point. Vertical lines still connect to

the vertical vanishing point. Lines representing depth connect to the vertical

reference point (Figure 18.7).

Figure 18.6 Looking down at a one-point cube.



Figure 18.7 When drawing a one-point perspective box in three-point perspective,

foreshortened lines connect to the vertical vanishing point and the vertical

reference point. Horizontal lines are parallel with the picture plane and have no

vanishing point.

Measuring Width



Width is not foreshortened. Measure these dimensions along the horizontal

measuring line as if drawing in one-point perspective (Figure 18.8).

Figure 18.8 Measure width along the horizontal measuring line and connect to the

vertical reference line. is box is 2 units wide—1 unit to the le, and 1 unit to the

right—with its center at the center of vision.

Measuring Height



Measure vertical dimensions along the vertical reference line. e vertical

reference line is on the same plane as the measuring line (Figure 18.9).

Figure 18.9 Measure the height along the vertical reference line. e bottom of the

box is 3 units below the horizontal measuring line.

Measuring Depth

e vertical reference point serves as the vanishing point. To find the

measuring point, use a compass. Measure the distance from the vertical



reference point to the vertical axis point and transfer that distance to the

horizon line. e measuring point can be placed on the right or le side.

With the measuring point in place, measure using the tenique in one-

point perspective (Figure 18.10).

Figure 18.10 Find measuring points using the vertical axis point and measure as per

one-point perspective.

Right Axis



In this next example, the box is rotating along an axis that aligns with the

right vanishing point. is box tilts baward to the le or forward to the

right. All lines parallel with the axis of rotation still connect to the right

vanishing point. As the object rotates, the le and vertical vanishing points

ange position, and the right vanishing point remains in its place. To rotate

an object along a right axis, new le and vertical vanishing points are

needed.

Right Axis Point

To move the location of the le and vertical vanishing point, a right axis

point (RAP) is needed. e right axis point is the point of true angles

between the le and vertical vanishing points. Use a triangle and align its

legs to the le and vertical vanishing points. Place the 90° corner of the

triangle on the right reference line. is marks the location of the right axis

point (Figure 18.11).



Figure 18.11 e right axis point must be placed on the right reference line, 90°

from the le and vertical vanishing points.

Vanishing Points

A 90° angle placed at the right axis point creates two vanishing points that

draw 90° angles in perspective. e new vanishing points are placed along

the line that connects the le and the vertical vanishing points. To



accommodate the new vanishing points, this line may be extended to

whatever length necessary (Figure 18.12).

Figure 18.12 Using the right axis point, create two new vanishing points by

rotating the 90° angle. ese new vanishing points are rotated 20° clowise from

the original.



Measuring Points

e measuring points are placed on the same line as the vanishing points.

Measure the distance from the vanishing point to the right axis point. e

distance from the vanishing point to the measuring point will be the same

length (Figure 18.13). Use a compass or ruler to transfer the distance.



Figure 18.13 To establish the measuring points, measure the distance from the

vanishing point to the right axis point. Project that distance to the line connecting

the vanishing points.



Measuring Line

e measuring line must be parallel with the line the measuring points are

on. Since the measuring points are on an angled line, the measuring line

must be at the same angle (Figure 18.14).

e measuring procedure is the same—except it is sideways. Confirm that

the object being measured is on the same plane as the measuring line.

Determining this can sometimes be allenging; it takes some practice.



Figure 18.14 e measuring line must be parallel with the line the measuring

points are on (the line parallel with the right station point becomes the measuring

line).



Complete the Box

Connect lines to the new vanishing points. Lines parallel with the ground

plane (parallel with the axis of rotation) connect to the right vanishing point

(Figure 18.15).



Figure 18.15 Connect lines to vanishing points to complete the box.

Le Axis

A le axis rotation follows the same procedure as a right axis rotation. ere

is a new axis point: the le axis point (LAP). It is located on the le

reference line, 90° from the right and vertical vanishing points (Figure 18.16).

ere are also new measuring points (Figure 18.17) and a new measuring

line, parallel with the line the measuring points are on (Figure 18.18).

Connect lines to vanishing points to complete the box (Figure 18.19).



Figure 18.16 Use the le axis point to find the new vanishing points.



Figure 18.17 To establish the measuring points, measure the distance from the

vanishing point to the le axis point. Project that distance to the line the

vanishing points are on.



Figure 18.18 e measuring line must be parallel with the line the measuring

points are on, and the line being measured must be on the same plane as the

measuring line.



Figure 18.19 Connect lines to vanishing points to complete the box.

Cartesian Coordinate System



e Cartesian coordinate system is a graph that allows a point in space to be

accurately ploed. In three-dimensional Cartesian space this is accomplished

using three axes labeled x, y, and z. ere are variations to these

designations, but traditionally x and y are placed on a horizontal plane, with

y representing width and x representing depth. Height is represented by z.

is is the right-handed Cartesian coordinate system, and it is the system

used in this book.

One-Point Angles

A one-point perspective box, seen in a three-point view, can tilt forward or

baward (rotate along the y-axis), or tilt to the le or right (rotate along the

x-axis) (Figure 18.20). ese angles are approaed differently than the

others encountered thus far so it is worthwhile to address ea of them.

Figure 18.20 Using the Cartesian coordinate system to define one-point perspective

angles.

x -Axis

e axis designated x rotates around a line connected to the vertical

reference point. e object tilts to the le or right along this axis—this

creates new vanishing points. To locate these new vanishing points, a point

of true angles for x is needed.



e point of true angles for x is located along the vertical reference line.

Measure the distance from the vertical vanishing point to the vertical station

point. Transfer that distance to the vertical reference line (Figure 18.21). is

is the point of true angles: the x-axis point (XAP).



Figure 18.21 e 60° and 30° vanishing points are aligned horizontally with the

vertical vanishing point.

Any 90° angle drawn from the x-axis point will create two vanishing

points 90° apart. ese vanishing points are aligned horizontally with the

vertical vanishing point (Figure 18.22). Measuring points are also aligned

horizontally with the vertical vanishing point and are found by measuring

the distance from the vanishing point to the x-axis point (Figure 18.23).

Connect lines to vanishing points to complete the box (Figure 18.24).

Figure 18.22 e perspective angles drawn from the two new vanishing points

reflect the true angles plotted at the x-axis point.



Figure 18.23 Find measuring points by measuring the distance from the new

vertical vanishing points to the x-axis point. en transfer it to the horizontal line.

Figure 18.24 Connect lines to vanishing points to complete the box.

y-Axis



e final rotation is along a horizontal axis, the y coordinate. e box tips

forward or baward.

e point of true angles for the y-axis is the vertical station point (Figure

18.25, top).



Figure 18.25 e vanishing and measuring points are placed on the vertical

reference line. True angles are found at the vertical station point.



Figure 18.26 Since the measuring points are on a vertical line the measuring line

must also be vertical. is box is tilted 20° clowise.

e vanishing points and measuring points are placed on the vertical

reference line (Figure 18.25, boom).

Measure the height and depth using a measuring line that is parallel with

the vertical reference line (Figure 18.26, top).

Connect to vanishing points to complete the le side of the box (Figure

18.26, boom). Complete the box using horizontal lines for the thiness

(Figure 18.27).



Figure 18.27 Connect to the vanishing points to complete the box.



Figure 18.28 e angle of sight is determined at the vertical station point.

ree-Point Diagrams



At this point, the focus will ange to a previous topic: creating a three-point

diagram. Not generically, as before, but creating a diagram from a specific

viewpoint. is could not have been done earlier. To create a diagram from a

specific viewpoint, it is necessary to understand how axes points work.

Angle of Sight

First, consider the center of vision. In three-point perspective the viewer is

looking up or down, but at what angle? e horizon line is at the eye level,

and the vertical vanishing point is 90° from the horizon line. e center of

vision is somewhere between them. To place the center of vision at a specific

location, so that the viewer is looking at a precise angle, use the vertical

station point. ere is 90° between the vertical vanishing point and the

vertical reference point, 90° between looking straight down and looking

straight ahead. If the viewer is looking at a specific angle, place that angle at

the vertical station point. For example, if the viewer is looking down 20°,

draw a 20° angle down from the vertical station point (Figure 18.28).

Angle of Object

e next step is to orient the angle of the object to the picture plane. e

vertical axis point works the same as the station point in two-point

perspective. e vertical axis point determines the object’s angle to the

picture plane. For example, if the object should be turned 60°/30° to the

picture plane, draw those angles at the vertical axis point (Figure 18.29,

right).



Figure 18.29 e angle of the object to the picture plane is defined at the vertical

axis point.

First Steps

If a specific angle is desired for a three-point diagram, it is best to start with

the vertical station point (Figure 18.30). Work out the diagram from there,

establishing the center of vision, then using the vertical axis point to define

the angle of the object to the picture plane.



Figure 18.30 is three-point diagram begins at the vertical station point. e

viewer is looking down at a 20° angle. e object being drawn is at a 50°/40° angle

to the picture plane.



Eye Level

e viewer’s eye level depends on the placement of the ground plane.

e horizontal measuring line is placed at the center of vision, whi can

be—but is not necessarily—on the ground. e ground plane is determined

by the drawing. Decide where the ground is, then measure the distance from

the ground to the horizon line to determine the eye level (Figure 18.31).



Figure 18.31 In this example, there are 5 units between the ground and the center

of vision. ere are 3 units between the center of vision and the horizon line. e

eye level is 8 units above ground.



19 

Combining One- and ree-Point Perspective

Imagine the following scenario: a person is on a balcony looking down at a

photographer. e photographer is taking their picture. e scene below is in

three-point perspective—except for the camera. e camera is facing the

person on the balcony, so the camera is in one-point perspective. ere are

endless scenarios where a one-point object can be envisioned in a three-

point scene. is apter combines a three-point view with a one-point

object (Figure 19.1).

Figure 19.1 When combining a one-point object in a three-point view, the front of

the one-point box is parallel with the picture plane. In one-point perspective,

horizontal and vertical dimensions are parallel with the picture plane. In three-

point perspective, all dimensions are foreshortened.

One-Point Vanishing Point

Objects in one-point perspective have vertical and horizontal dimensions

parallel with the picture plane, and foreshortened lines connect to the center



of vision.

e Placement

To illustrate this, draw a one-point box, 2 units wide, 2 units high, and 4 units

deep. It is 1 unit to the right of the center of vision and 4 units behind the

picture plane. First, measure 1 unit to the right of the center of vision (Figure

19.2). en, measure 4 units behind the picture plane (Figure 19.3). Make this

point the boom le corner of the box.



Figure 19.2 Measure 1 unit to the right of the center of vision.

Figure 19.3 Measure 4 units behind the measuring line. An angle 90° to the

measuring line connects to the vertical reference point. A measuring point for the

vertical reference point is needed.

Width

e box is 2 units wide. Measure the width along the measuring line and

project the distance baward, using the vertical reference point (Figure

19.4).



Figure 19.4 Horizontal dimensions are parallel with the picture plane. Measure 2

units along the horizontal measuring line. Project the 2 units to the desired

location.

Superimposing Diagrams

Now the width and location of the one-point box has been established. All of

this was done using the three-point diagram. But to draw the one-point box,

and to measure its depth, requires a one-point diagram. A one-point

diagram needs to be superimposed on the three-point diagram. Combining a

one-point diagram and three-point diagram is not difficult, but there are,

however, two important rules to remember.



First, a person can only look in one place at any given time, so there can

be only one center of vision. e center of vision in the one-point diagram

must be in the same place as the center of vision in the three-point diagram.

Second, a person can be in only one place at a time, thus the distance from

the viewer to the picture plane must remain constant. e distance from the

center of vision to the station point must be the same in the one-point

diagram as it is in the three-point diagram. Keep these two important rules

in mind when superimposing multiple perspective diagrams (Figure 19.5).

Figure 19.5 A one-point diagram can be superimposed on a three-point diagram if

both diagrams use the same center of vision and the distance from the station

point to the picture plane remains constant.



Depth

Move the measuring line so that it is on the same plane as, and touing, the

line being measured. Measure the depth using one-point perspective

guidelines (Figure 19.6).

Figure 19.6 Lines drawn to the center of vision are 90° from the picture plane (but

at an angle to the ground plane). Measure depth as measured in one-point

perspective. Proper placement of the measuring line is vital.

Height



Turn the measuring line vertically to measure height (Figure 19.7). e

height is parallel with the picture plane and is not foreshortened. Measuring

points are not required to measure height and width in one-point

perspective.

Figure 19.7 Finish the box by rotating the horizontal measuring line 180° to

establish the height.

Rotating a One-Point Object



e one-point diagram can be rotated to any angle using the center of vision

as an axis point. e angles are true angles. For example, if the one-point

diagram is rotated 45° clowise, the box being drawn will be rotated a true

45° clowise (Figure 19.8). Remember, there can be only one center of

vision, and the distance from the station point to the picture plane remains

constant.



Figure 19.8 e box can be rotated along the y-axis by rotating the diagram to the

desired angle.
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Combining Two- and ree-Point Perspective

In two-point perspective, the vertical lines are parallel with the picture plane

(Figure 20.1). e procedures to combine two-point and three-point

diagrams follow the same rules that apply to combining one-point and

three-point diagrams. For this example, draw a 3 unit cube. is cube is

located 2 units to the right of the center of vision and 4 units below the

measuring line (Figure 20.2).

Figure 20.1 A two-point object in a three-point view.



Figure 20.2 e box is 2 units to the right and 4 units below the center of vision.

First, using the horizontal measuring line, measure 2 units to the right of

the center of vision. en, using the vertical measuring line, measure 4 units

below the center of vision. is point represents the top, front corner of the

two-point box.



Superimposing Diagrams

e location of the two-point box was established using the three-point

diagram (all these dimensions are in three-point perspective). To draw the

two-point perspective box, a two-point perspective diagram is needed.

When superimposing the two-point diagram, remember that there is only

one center of vision (the two diagrams share the same center of vision), and

the distance from the viewer to the picture plane remains constant.

Use the two-point diagram’s station point to establish the le and right

vanishing points. For example, if the cube is at a 45° angle to the picture

plane, draw 45° angles from the station point (Figure 20.3).



Figure 20.3 A two-point diagram superimposed on a three-point diagram. e le

and right vanishing points are set up at 45°.

Measuring

Take care that the measuring line and the object being measured are on the

same plane. is can be allenging. In this example, the measuring line

must be moved down to the level of the box. Use the vertical vanishing



point to project the measuring line down 3 units, touing the line being

measured (Figure 20.4).

Figure 20.4 Move the measuring line down 4 units, so that it is on the same plane

as the line being measured.

Once the measuring line is in place, follow two-point perspective

procedures to measure the width and depth (Figure 20.5).



Figure 20.5 Measuring horizontal dimensions follows the same procedures as

outlined in two-point perspective.

Vertical dimensions are not foreshortened, so turn the measuring line 90°

to measure height (Figure 20.6).



Figure 20.6 Height is parallel with the picture plane and not foreshortened. Turn

the measuring line vertically.

Complete the Box

Connect foreshortened lines to the right and le vanishing points to

complete the box (Figure 20.7).



Figure 20.7 Connect lines to vanishing points to finish the box.

e diagram can be rotated to any angle using the center of vision as an axis

point (Figure 20.8).



Figure 20.8 To rotate the object being drawn, rotate the two-point diagram.

Using these teniques, one-, two-, and three-point perspective can now

be combined in the same illustration (Figure 20.9).



Figure 20.9 Combining one, two, and three-point perspective.
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Combining ree-Point Perspective Diagrams

It may seem like every possible topic has been explored at this point. But,

there is more: superimposing multiple three-point diagrams (none of the

objects share vanishing points, and no angles are parallel with the picture

plane). To do this successfully, the two cardinal rules must be followed: there

is only one center of vision, and the distance between the viewer and the

picture plane must remain constant (Figure 21.1). In addition to the two

cardinal rules, all superimposed three-point diagrams must maintain the

angle relationships discussed in Chapter 17 (Figures 17.3–17.13).



Figure 21.1 ese superimposed diagrams share the same center of vision, and the

distance from the picture plane to the station point is consistent throughout.
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Compound Inclines in Two-Point Perspective

It is time to revisit the world of two-point perspective, where the viewer is

looking parallel with the ground plane, and the center of vision is located on

the horizon line. It is batraing, but a good understanding of three-point

perspective is needed to solve this next problem. In the next example, the

box is tilted. Not tilted as drawn before, with one side parallel with the

ground plane, and one side connecting to a vanishing point on the horizon

line. is is a compound incline, a shape tilted so that no plane is parallel

with the ground, and no lines connect to vanishing points on the horizon

line. If this shape was touing the ground, it would do so at a corner.

Imagine a pair of dice bouncing along a table. When they stop moving, the

dice are in one- or two-point perspective. When moving, they are likely at

an incline. It can be a simple incline where one surface is parallel with the

ground plane, or a compound incline where no surface is parallel with the

ground plane.

e Compound Incline Box

For this example, draw a box. e ba of the box is 30° above the ground

plane, and the box then rotates counterclowise 30° (Figure 22.1). is is

best approaed as a two-step process.



Figure 22.1 No dimensions are parallel with the ground plane.

e Incline

e box is angled 30° from the ground plane. Follow the procedures outlined

in Chapter 10. Aer drawing the incline (Figure 22.2), the box rotates

counterclowise 30°. e axis of rotation is aligned with the upper auxiliary

vanishing point (Figure 22.2, inset).



Figure 22.2 First, using a right axis point, li the box 30° from the ground plane.

en, rotate the box 30° counterclowise along an axis aligned to the upper

auxiliary vanishing point.



e Rotation

As the box rotates along this axis, the right and the lower auxiliary

vanishing points ange position. is is where the three-point procedures

come into play. Create reference lines following the three-point perspective

guidelines. (e diagram is the same as a three-point diagram. e only

difference between the two diagrams is the labeling, see Figure 22.3.)



Figure 22.3 Create three reference lines, ea intersecting the center of vision, and

ea being at a right angle to the lines connecting the three vanishing points. is



diagram is the same as a three-point diagram. e labels are different, but the

geometry is the same.

Axis Point

Since the right and vertical vanishing points ange positions, the box

rotates along a le axis. us, a le axis point is needed. is point is a true

90° between the right and the lower auxiliary vanishing points. Place the le

axis point on the le reference line (Figure 22.4).



Figure 22.4 Establish the le axis point along the le reference line.



Complete the Box

Create new right and le vanishing points, rotated 30° counterclowise

(Figure 22.5). Plot corresponding measuring points (Figure 22.6). Be sure the

measuring line is at the proper angle (Figure 22.7). Measure the box (Figure

22.8) and connect the corners to the vanishing points to complete the

drawing (Figure 22.9). Review Chapter 19 for a detailed description of this

procedure.



Figure 22.5 Plot two new vanishing points, keeping a 90° angle at the le axis

point.

Figure 22.6 Plot measuring points for ea of the new vanishing points.



Figure 22.7 e measuring line must be parallel with the line the measuring points

are on. Place the measuring line at the corner of the box to ensure it is on the same

plane as the line being measured.



Figure 22.8 Measure the lines connecting to the 30° and 60° vanishing points.



Figure 22.9 Connect lines to vanishing points to complete the box. is box is

tilting up 30° from the ground plane, and rotating 30° counterclowise.
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Shadows

ere are two types of light sources: natural and artificial. In the world of

perspective, natural light emanates from the sun (including that whi is

reflected by the moon). Any other light source is considered artificial. Fire

sources su as candles, and electrical sources su as light bulbs, are all

considered artificial.

Shadow Components

Natural Light Shadows

Shadows from natural light can be placed into three categories: positive

shadows, negative shadows, and parallel shadows. ese categories are

based on whether the light source is in front, behind, or to the side of the

viewer.

Artificial Light

Shadows from artificial light sources are called converging shadows

(sometimes the terms concentric or radiating shadows are used when

discussing artificial light).

Ground Lines and Light Angles



Whether natural or artificial, all shadows are ploed using a ground line

(GL) and a light angle (LA). A light angle is the angle of the light ray to the

ground plane, and is used to determine the length of the shadow. e ground

line is a directional line parallel with the ground plane, and is used to

determine the angle of the shadow.

Shadow Rules

ere are rules that describe the behavior of shadows. ese rules may seem

abstract at first, but with practice they become intuitive.

Shadows on Horizontal Surfaces

Shadows on horizontal surfaces follow these rules:

Rule One. Shadows of vertical lines follow the ground line angle.

Rule Two. Shadows of horizontal lines are parallel with the lines casting

them.

Rule ree. Shadows of angled lines are found by ploing the line’s end

points.

Shadows on Vertical Surfaces

When a shadow falls on a vertical surface, these rules must be followed:

Rule Four. Vertical lines cast vertical shadows.

Rule Five. Shadows of horizontal lines are found by ploing the line’s end

points.

Rule Six. Shadows of angled lines are found by ploing the line’s end points.

Shadows on Angled Surfaces



On angled surfaces, there is one rule:

Rule Seven. Shadows on all angled surfaces are found by ploing the line’s

end points.

Parallel Shadows

Parallel shadows occur when the sun is directly to the right or le of the

viewer, 90° from the line of sight. Imagine an arc overhead, beginning at the

viewer’s le and ending 180° to the viewer’s right. If the sun is anywhere

along this arc, the light angle and the shadows (the ground line) have no

vanishing points, they are parallel with the picture plane (Figure 23.1). e

ground line is drawn horizontally, directly to the le or right of the object.

Figure 23.1 When the position of the sun is 90° from the line of sight, the shadows

are parallel with the picture plane.

If the sun is closer to the horizon line, the light angle is more oblique, and

the shadows are longer. e higher the sun, the steeper the light angle, and

the shorter the shadows. e light angle determines the length of the

shadow. e light angle—being parallel with the picture plane—is a true

angle. For example, if the sun is 45° above the horizon line, all light angles



are drawn at a true 45°. If the sun is directly overhead, all light angles are

true verticals.

Below are examples of parallel shadows, ea following one of the rules

listed above.

Rule One

Shadows of vertical lines follow the ground line angle. When the light source

is 90° from the line of sight, the ground line is drawn parallel with the picture

plane, being a true horizontal line. If the light source is to the right, the

shadows are to the le. If the light source is to the le, the shadows are to

the right (Figure 23.2).

Figure 23.2 Rule One: shadows of vertical lines follow the ground line angle. ey

are parallel with the horizon line.

Rule Two

e shadows of horizontal lines are parallel with the lines casting them. e

shadow, and the line casting the shadow, connect to the same vanishing

point. To plot the shadow of a horizontal line, first project a vertical line to

the ground. is creates a “flagpole.” Draw the shadow of the flagpole using

rule number one. Aer finding the end of the flagpole’s shadow, draw a line

to the vanishing point. e flagpole is used to find the location of the



shadow. e vanishing point is used to establish the angle of the shadow

(Figure 23.3).

Figure 23.3 Rule Two: shadows of horizontal lines, parallel with the ground,

connect to the same vanishing point as the line casting the shadow.

Rule ree

Shadows of angled lines are found by locating end points (finding the

beginning and end of the shadow) and then connecting the dots. Angled

lines can be difficult. ey do not follow the ground line and they do not go

to any easily-found vanishing point. Again, use the flagpole tenique and

rule number one to find the end points (Figures 23.4–23.5).



Figure 23.4 Rule ree: plot the end points, and connect the dots to find the

shadow of angled lines.



Figure 23.5 is example uses the flagpole tenique to plot the shadow of a cuboid

angled to the ground plane.

Rule Four

Vertical lines cast vertical shadows. e pole and the wall are parallel, so the

shadow is parallel with the pole. A vertical line casting a shadow on a

vertical wall creates a vertical shadow (Figure 23.6).

Figure 23.6 Rule Four: vertical lines cast vertical shadows on vertical surfaces. If

the pole and the wall are parallel, the pole and the shadow will also be parallel.



Figure 23.7 e shadow cast from a horizontal line on a vertical surface is found by

plotting the end points.

Rule Five



A horizontal line casting a shadow on a vertical surface is a lile more

allenging than the previous examples. e shadow is typically at an angle,

but not necessarily the same as the light angle. To plot this angle, find the

shadow of the end points, then connect the dots. Finding the end points can

be straightforward (Figure 23.7) or a lile more difficult (Figure 23.8).

Sometimes these shadows fall across several surfaces. Finding the end points

in these situations can be very difficult indeed, as there are many possible

scenarios.

Begin by ploing the shadow of a horizontal line that falls across two

surfaces (a horizontal and a vertical surface). First, use rule number two to

find the horizontal shadow. en locate the intersection of the horizontal

shadow and the vertical surface. Connect the end points (Figure 23.7).

If the shadow does not hit the vertical surface, then there is no intersection

at the wall. With no intersection, how is the second end point found? ere

are two solutions to this problem: extend the wall to the shadow (Figure

23.8), or project the shadow to the wall (Figure 23.9).

Figure 23.8 Solution 1. If the shadow does not intersect the box, the box can be

extended. Draw a phantom wall long enough to create an intersection.



Figure 23.9 Solution 2. Draw the shadow of the box and pole. Find the intersection

of the two shadows. Using the light angle, project the intersection of the shadows

on the ground, to the side of the box, creating an end point.

Rule Six

Angled lines are found by ploing the end points. Draw flagpoles from the

end points, plot the shadow of the flagpoles, and connect the end points

(Figure 23.10).



Figure 23.10 Rule Six: shadows of angled lines (this line is angled to both the

ground and the wall) are found by plotting, and then connecting, the end points.

Rule Seven

Ploing shadows on angled surfaces is no different than ploing shadows of

angled lines. Find, and then connect, the end points. Anything that is not

parallel or perpendicular to the ground plane will require ploing end

points. Whether it is the line casting the shadow, or the surface the shadow is

cast on, end points will need to be found (Figure 23.11).



Figure 23.11 Rule Seven: shadows on angled surfaces are found by plotting and

then connecting the end points.
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Shadows of Round, Spherical, and Curved

Objects

Shadows of round objects, or any curved object, are found by placing

flagpoles at various points along the curve (Figure 24.1), ploing shadows

for ea flagpole (Figure 24.2), then connecting the dots to create the shadow

(Figure 24.3). All curved lines, whether vertical, horizontal, or angled use the

same procedure. More allenging shapes are created when shadows fall

across multiple surfaces. Find and connect end points to resolve the shape

(Figure 24.4).

Figure 24.1 Draw flagpoles from points along the curve, stopping at the ground

plane. e more flagpoles that are drawn, the more accurate the shadow will be.



Figure 24.2 Plot the intersection of the light angle and the ground line. Plot as

many points as necessary to create an accurate shadow.



Figure 24.3 Connect the dots from the intersection of the light angle and ground

line to create the shadow.



Figure 24.4 Plotting shadows that fall across multiple surfaces can be allenging.



Figure 24.5 Plotting the shadow of a sphere is the same as plotting the shadow of

an ellipse.



Shadows of Spheres

It may be useful to review the apter on drawing spheres, as it is helpful to

know how to draw a sphere before drawing its shadow. Because light angles

originate from a point at infinity when natural light is used, the core shadow

on a sphere is a great circle. Light angles tou the sphere at its widest

point (Figure 24.5, top). With artificial light, the core shadow becomes

progressively smaller as the light angle moves closer to the sphere. e

sphere’s core shadow is tangent to the intersection of the light angle and the

edge of the sphere.

e cast shadow of a sphere is ploed by drawing flagpoles along the core

shadow (Figure 24.5, middle le). Plot the shadow of ea flagpole (Figure

24.5, middle right). en connect the dots (Figure 24.5, boom). Ploing the

shadow of a sphere is the same as ploing the shadow of an ellipse, as the

core shadow is elliptical.

Shadows on Spheres

e shadow of a straight line, cast on the surface of a sphere, is always

circular. It follows the shape of the sphere. Parallel light creates cast

shadows parallel with the picture plane. ese shadows are a true half circle,

stopping at the core shadow (Figure 24.6). Shadows not parallel with the

picture plane strike the sphere at an angle and are elliptical.

One of the easiest ways to locate a cast shadow falling across a sphere is

to find the intersection of the cast shadow and the core shadow on the

ground plane (Figure 24.6, A). en, using the light angle, project the

intersection ba to the sphere (Figure 24.6, B).



Figure 24.6 A cast shadow follows the shape of the sphere.

Shadows on Curved Surfaces

Ploing shadows that fall across curved surfaces requires the same creative

and analytical problem-solving skills. As with all curved forms, end points

are ploed and then connected. e more points that are ploed, the more

accurate the shadow. To find these points, it is oen helpful to draw the

shadow first on a flat plane, then wrap the shadow around the curved

surface by finding intersections. is can require some clever maneuvering

(Figure 24.7).



Figure 24.7 e shadow was first drawn on the floor then projected to the curved

surface.
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Positive Shadows

When the sun is in front of the viewer, objects are balit and shadows are

angled forward, away from the horizon line. As the position of the sun

moves farther to the le or right, the shadows become more horizontal,

closer to the angle of the horizon line, and closer to being parallel. Positive

shadows appear when the light source is anywhere within 90° of the center

of vision (Figure 25.1).

Figure 25.1 Positive light is from a natural light source in front of the viewer.



Positive Shadow Components

Ground Line Vanishing Point

e ground line is now foreshortened and has a vanishing point. e ground

line vanishing point (GLVP) is always placed on the horizon line (Figures

25.2–25.3).

Light Angle Vanishing Point

e light angle vanishing point (LAVP) represents the light source. It is

aligned with and placed directly above the ground line vanishing point

(Figures 25.2–25.3).



Figure 25.2 Align the light angle vanishing point with the ground line vanishing

point.

Figure 25.3 e ground line vanishing point can be located anywhere along the

horizon line.

Angle of Shadow

e location of the ground line vanishing point determines the angle of the

shadow. Approa the ground line vanishing point like any other vanishing

point. A shadow is nothing more than a horizontal line. Drawing a specific

ground line angle is the same as drawing any horizontal angle. For example,

if the sun is 30° to the right of the center of vision, make a 30° angle from the

station point to the horizon line. is ground line vanishing point will draw

shadows at a 30° angle to the line of sight, or 60° from horizontal (Figure

25.4).



Figure 25.4 Create specific ground line angles by projecting the desired angle from

the station point. In this example, the sun is 30° to the right of the center of vision.

is creates shadows 60° from horizontal.

Angle of Light

e location of the light angle vanishing point determines the length of the

shadow. A light angle vanishing point closer to the horizon line produces a

longer shadow. A light angle vanishing point farther from the horizon line

produces a shorter shadow. To illustrate a specific time of day, the light angle

vanishing point must be properly positioned. Early morning or late evening

light requires an oblique light angle, while mid-aernoon suggests a steeper

light angle. Drawing a specific light angle is the same as drawing any incline.

e light angle vanishing point can be treated like any auxiliary vanishing

point. For example, if the sun is 45° above the horizon line, first make a

ground line measuring point (true angles for inclines are found at measuring

points). en draw a 45° angle, intersecting a point directly above the ground

line vanishing point (Figure 25.5). Review Chapter 9 for more information

about inclines.



Figure 25.5 To create a specific light angle, first plot a ground line measuring point

(GLMP). True angles drawn from the ground line measuring point create a light

angle vanishing point, whi draws those same angles in perspective.
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Negative Shadows

Negative shadows appear when the sun is behind the viewer. Shadows are

angled baward, toward the horizon line (Figure 26.1).

Figure 26.1 Negative shadows occur when the light source is behind the viewer.

Negative shadows create an interesting problem. Only things in front of

the viewer can be drawn. Points that are behind the viewer’s head can’t be

drawn on the paper (the exception being curvilinear perspective). So how

can the light source be represented when the light source is behind the



viewer? Using some creative thinking and an understanding of geometry—

mainly an understanding of geometry—can unlo this problem.

Negative shadows are caused by light rays coming over the viewer’s

shoulder. ese rays are at a specific angle to the ground. Imagine the light

rays continuing underground, beyond the ground plane, continuing to

infinity, and leading to a vanishing point below the horizon line. is is the

light angle vanishing point. is vanishing point creates congruent angles to

the light source. In this scenario, the light angle vanishing point is not the

light source itself but a point below, whi draws the same angle as the light

source (Figure 26.2).

Figure 26.2 Negative shadows require the light angle vanishing point to be below

the horizon line, creating congruent angles to the light source located above and

behind the viewer.



Creating Negative Shadows

Angle of the Shadow

Use the station point to determine the angle of the shadow (this is the same

tenique used when drawing positive shadows). Angles projected from the

station point create vanishing points that draw the same angle in perspective

(Figure 26.3).

Figure 26.3 Ground line angles are found from the station point.

Angle of the Light

e first step in creating a specific light angle is to create a ground line

measuring point (Figure 26.4). Finding a specific light angle vanishing point

follows the same procedures as finding an auxiliary vanishing point. For

example, if the light source is to be 45° above the horizon, project that angle

from the ground line measuring point. Negative shadows require the light

angle vanishing point to be below the horizon line (Figure 26.5).



Figure 26.4 A ground line measuring point is needed to locate the light angle

vanishing point.

Figure 26.5 Angles drawn from the ground line measuring point create a light

angle vanishing point that draws those same angles in perspective.
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Shadows from Artificial Light Sources

Natural light is from a source at su a distance that the shadows cast are

considered parallel. All lines drawn from the same point on the horizon line

are parallel in perspective. us, all shadows from a natural light source are

likewise parallel in perspective.

An artificial light source is mu closer. e shadows are not parallel but

radiate around a point. e shadows become wider as they get farther away

from the light source. is type of light source is called converging light.

Components of Shadows Created From Artificial

Light

Ground Line Location

e ground line is located 90° from the light source. It is most frequently

placed on the surface the shadow is cast upon, typically the ground plane

(Figure 27.1). In contrast to natural light, artificial light can have multiple

ground line vanishing points. ey can be on walls, floors, and ceilings

(Figures 28.2–28.5). Shadows at different heights (e.g., shadows on a floor

and shadows on a table) have ground line vanishing points at the same

height as the shadow (Figure 27.2).



Figure 27.1 Converging shadows radiate around the ground line vanishing point.

e ground line vanishing point is always 90° from the light source.



Figure 27.2 e ground line vanishing point must be at the same level as the

surface the shadow is on.



Figure 27.3 Ground line vanishing points can be on vertical surfaces.



Figure 27.4 Ground line vanishing points are located 90° from the light source and

on the same surface as the object casting the shadow.



Figure 27.5 Ea ground line vanishing point is placed on the same plane as the

shadow.

Light Angle Location

e light angle vanishing point represents the light source. It can be

anywhere. However its position must be known, as the placement of the

ground line vanishing point depends on the light source’s location.
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ree-Point Shadows

All the previous shadow rules apply to three-point perspective. But, in three-

point perspective, due to the vertical lines being foreshortened, a more

complicated situation is created when faced with the task of locating the

light angle and ground line vanishing points. e following pages illustrate

how to apply natural and artificial light systems in three-point perspective.

Parallel Shadows, Bird’s-Eye View

Ground Line

As with one- and two-point perspective, when the sun is 90° from the

viewer’s line of sight, the ground line is parallel with the picture plane and

there is no ground line vanishing point.

Light Angle

Unlike one- and two-point perspective, the light angle is not parallel with

the picture plane. In three-point perspective, due to the picture plane being

foreshortened, the light angle has a vanishing point. If the sun is directly

overhead, light rays are vertical (90° to the ground plane). Since all vertical

lines connect to the vertical vanishing point, the vertical vanishing point

becomes the light angle vanishing point. If the sun is to the right or le, the

light angle vanishing point moves horizontally to the le or right of the

vertical vanishing point (Figures 28.1–28.2).



Location

To place the light source in a specific location, find the point of true angles

(this is the same procedure outlined in Figure 18.21). Measure the distance

from the vertical vanishing point to the vertical station point, then transfer

that distance to the vertical reference line, establishing the x-axis point

(Figure 28.3, top). From the x-axis point, project the desired angle, locating

the light angle vanishing point. For example, if the light source is to be at a

60° angle from the ground plane, project a true 60° angle from the point of

true angles (Figure 28.3, boom).

e light angle vanishing point does not represent the light source, but it

does create angles congruent with the light source (review Chapter 26 on

Negative Shadows). If the light angle vanishing point is to the right of the

vertical vanishing point, the sun is to the viewer’s le. Conversely, if the

light angle vanishing point is to the le of the vertical vanishing point, the

sun is to the viewer’s right (Figure 28.1).



Figure 28.1 When the light angle vanishing point is to the le of the vertical

vanishing point, the sun is above and to the right of the viewer.



Parallel Shadows, Worm’s-eye view

A worm’s-eye view is approaed the same as a bird’s-eye view, only

upside-down. e procedure is the same. However, in a worm’s-eye view,

the light angle vanishing point is above the horizon line, and does represent

the sun’s actual location (Figure 28.2).



Figure 28.2 Unlike the bird’s-eye-view, in a worm’s-eye view the light angle

vanishing point represents the location of the sun.



Figure 28.3 Use the x-axis point (the point of true angles) to establish a light source

at a specific angle.

Positive Shadows

e sun is in front of the viewer. Objects are balit, and shadows angle

toward the viewer.



Ground Line

e ground line vanishing point is located on the horizon line, as it is for all

natural light situations.

Light Angle

e light angle vanishing point is directly above the ground line vanishing

point. In three-point perspective, all vertical lines connect to the vertical

vanishing point. us, the ground line vanishing point and the light angle

vanishing point align with the vertical vanishing point (Figures 28.4–28.5).



Figure 28.4 When drawing positive shadows in a bird’s-eye view, the light angle

vanishing point is above the horizon line, and aligned to the vertical vanishing

point.



Figure 28.5 Positive shadows in a worm’s-eye view. e light angle vanishing point

and the ground line vanishing point connect to the vertical vanishing point.

Negative Shadows



Objects that are behind the station point can’t be drawn on the paper. When

the sun is behind the viewer, geometry must be used to find a point that

draws angles congruent with the sun (refer to Figure 26.2).

Ground Line

e ground line vanishing point is located at infinity and placed on the

horizon line.

Light Angle

e light angle vanishing point is placed below the horizon line, aligned with

the vertical vanishing point (Figures 28.6–28.7).



Figure 28.6 When drawing negative shadows in a bird’s-eye view, the light angle

vanishing point and the ground line vanishing point are aligned with the vertical



vanishing point.



Figure 28.7 When drawing negative shadows in a worm’s-eye view, the light angle

vanishing point and the ground line vanishing point are aligned with the vertical

vanishing point.

Light Source Location

Placing the light source in a specific location requires a solid understanding

of three-point angles.

Ground Line

e ground line angle is established using the vertical axis point. For

example, to draw a shadow that is 50° from horizontal, draw a true 50° angle

at the vertical axis point. en project that angle to the horizon line (Figure

28.8).

Light Angle

e light angle is a bit more complicated. It involves making a new

reference line and a new axis point. Use this procedure for both positive and

negative shadows (Figures 28.9–28.10).



Figure 28.8 Use the vertical axis point to establish a specific ground line angle.





Figure 28.9 Positioning the light angle vanishing point in a specific location

requires a new axis point.



Figure 28.10 e finished shadow. e sun is 40° to the le and 30° above the

horizon line.

Converging Light in ree-Point Perspective

Artificial light in three-point perspective is approaed in the same way as

one- or two-point perspective. e only difference is that vertical lines are

now foreshortened. Otherwise, the same rules apply (Figures 28.11–28.12).



Figure 28.11 When drawing shadows from artificial light sources, the ground line

vanishing point is located 90° from the light angle vanishing point.



Figure 28.12 Shadows on vertical surfaces have ground line vanishing points on

the same surface as the shadow.
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Reflections

While shadows are on surfaces, reflections appear inside surfaces and appear

as a virtual object. Reflections are aligned with the real object, at a right

angle to the mirror’s surface. e distance from the virtual object to the

mirror is the same as the distance from the real object to the mirror. Various

methods can be used to plot reflections. e following pages outline a few of

the options.

One-Point Perspective

Vertical Mirror (reflections along the y-axis)

ese reflections have no foreshortening. Measure the distance from the

object to the mirror and duplicate that distance inside the mirror. e height

of the object does not ange (Figure 29.1).



Figure 29.1 Horizontal reflections are not foreshortened.

Horizontal Mirror (reflections along the x-axis)

Likewise, reflections in a horizontal mirror have no foreshortening. Simply

duplicate the object in the reflective surface. If there is distance between the

object and the reflective surface that distance must also be duplicated (Figure

29.2).



Figure 29.2 Vertical reflections are not foreshortened.

Vertical Mirror (reflections along the z-axis)

In this scenario, the distance from the object to the mirror is foreshortened.

ere are several ways to find a foreshortened distance. A measuring point

can be used (Figure 29.3), or a reference point (Figure 29.4). A third method

involves using geometry to create two lines of equal length (Figure 29.5).

See Figure 36.3 (top) for step-by-step instructions for this procedure.

Figure 29.3 e distance between the object and mirror is foreshortened. Use a

measuring point to reflect the distance.



Figure 29.4 A reference point can be used to move parallel lines baward and

forward in space.

Figure 29.5 Using geometry to plot the distance of the reflection.



Figure 29.6 Use horizontal angles, plotted from the station point, to draw

reflections angled to the mirror.



Two-Point Perspective

Reflections in vertical surfaces are foreshortened. Reflections in horizontal

surfaces are not. e same procedures used to plot one-point reflections

apply to two-point.

Reflective Angles

All the objects being reflected thus far have been parallel with or

perpendicular to the reflective surface. If the object is angled to the mirror,

the reflection is at that same angle. First calculate the angle of the object to

the mirror. en plot that same angle on the opposing side of the reflective

surface (Figure 29.6). Reviewing the information on horizontal angles

(Chapter 7) may be helpful.
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Reflections on Inclined Surfaces

ere are many ways to plot reflections in an inclined mirror—any of the

previous methods can be used. But, understanding how angles work in

perspective is the hallmark of becoming a proficient practitioner. So, in the

following example, this reflection will be drawn using angles.

In this scenario, the mirror is at a 30° angle to the ground plane (Figure

30.1). First, calculate the angle of the object to the mirror (Figure 30.2). en,

duplicate that angle inside the mirror (Figures 30.3–30.4). To establish the

length of the reflection, draw a 90° angle to the mirror’s surface (Figure 30.5).

e reflection of a single line can be complicated. A three-dimensional

object is even more so (Figure 30.6).



Figure 30.1 e mirror is 30° to the ground plane.



Figure 30.2 e angle of the object to the mirror is 60°.





Figure 30.3 If the angle of the object to the mirror is 60° then the angle of the

reflection to the mirror is also 60°.



Figure 30.4 Project a 60° angle from the mirror’s surface (from the lower auxiliary

vanishing point) to establish the reflection vanishing point.



Figure 30.5 Measure the reflection’s length by drawing a line from the top and

bottom of the object to a point 90° from the mirror’s surface (the upper auxiliary

vanishing point).



Figure 30.6 is reflection was created using the methods outlined in the previous

illustrations.
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Reflections on Curved Surfaces

Reflections on curved surfaces are rarely discussed. e subject is usually

ignored, or the advice is to “just fake it.” is can be troublesome, so this

subject will be explored further. But before looking at reflections on curved

surfaces, reflections on flat planes will be reviewed.

Reflections are seen when light waves bounce off shiny surfaces. e

wave’s angle is key to the perceived position of the reflected image.

Reflections appear to be inside the mirror. ere is, of course, no object

inside the mirror. So why is an object seen where none exists?

First, consider the science behind reflections. An angle 90° from a

reflective surface is called “normal.” Light rays hit reflective surfaces at

specific angles to normal. is angle is called the incidence angle. e

reflective light angle is always the same to normal as the angle of incidence

(Figure 31.1). To put it simply: light bounces off a surface at the same angle it

hits the surface. is is the law of reflection.

So, light is bouncing off the surface, but light is seen as a straight line.

Because of this, two images are seen: the real object, and a virtual object (the

reflection). e reflection is seen aligned with the reflection angle. In flat

mirrors, reflections appear to be inside the mirror. e reflection appears at

the same distance from the reflective surface as the real object (Figure 31.1).



Figure 31.1 e law of reflection states that the incidence angle to normal equals

the reflection angle to normal.

Convex Surfaces

e law of reflection works the same with curved surfaces. But, the position

of the reflection is different than those on flat surfaces. e reflection’s

position anges with the position of the viewer. e distance from the real

image to the mirror can’t be measured and duplicated. is makes ploing a

reflection much more difficult (Figure 31.2). To complicate maers, a

cylinder reflects beyond 180°. Depending on the angle of incidence, objects

behind the cylinder may be reflected (these reflections are thin slivers seen

at the edge of the cylinder).



Figure 31.2 e reflection’s position inside the convex mirror anges with the

viewer’s location.

To draw reflections on a cylinder, the incidence angle to normal needs to

be ploed for ea object. Although this is possible, it is impractical. While it

may be aempted for “fun,” it will also take a long time. Only a few points

need to be ploed to understand how these reflections work (Figures 31.3–

31.4). Likewise, only a few points need to be ploed to appreciate how time-

consuming this exercise is.



Figure 31.3 To draw a reflection on a cylinder, the angles of incidence and

reflection must be plotted, whi are at an incline as they travel to the viewer’s

eye. is is a difficult and impractical task. e bottom drawing is not designed as



an instructional guideline, but only to illustrate what is needed to plot a single dot

on a reflective cylinder.

So, if it is not practical to plot reflections on curved surfaces, how are they

approaed? First, develop a solid understanding of the geometry.

Understand the relationship between the viewer, the incidence angle, and the

virtual image. Knowledge is the best tool. In addition, have at hand a

collection of curved reflective objects. Metallic paper can be purased at

most art stores, and bent into many different shapes. Seeing the actual

reflections brings the science to life. With an understanding of the science,

and a collection of reflective objects to refer to, intelligent and convincing

reflection estimations can be made.

Figure 31.4 It was a great deal of work to draw this single reflection. Reflecting an

entire environment in a curved surface is an unreasonably difficult task.

Concave Surfaces



ere is a subject even more difficult than convex surfaces: concave surfaces.

Fortunately, reflective concave surfaces are not common; they will be briefly

addressed nonetheless. To fully cover the complexity of this topic would

require more space than is available, so here is an overview.

Concave surfaces have a center point (the center of the reflective surface’s

arc) and a focus point (a point halfway between the center point and the

mirror) (Figure 31.5, upper le). While the rule governing the angle of

incidence and angle of reflection to normal still applies, the angle of

reflection always passes through the focus point (Figure 31.5, upper right).

Four examples of reflections on concave surfaces are presented. e

reflections are quite different depending on the position of the object being

reflected. Sometimes the reflection is reversed; sometimes it is upright.

Reflections of objects between the viewer and the center point appear

smaller, reversed, and in front of the mirror (Figure 31.5).

Reflections of objects between the focus point and center point appear

larger, reversed, and in front of the real object (Figure 31.6, top).

Objects at the focus point disappear—in theory. In reality, the reflection

looks like a blurred streak across the mirror surface (Figure 31.6, middle).

Objects between the focus point and the mirror are larger and not

reversed, and appear behind the mirror (Figure 31.6, boom).

e usual advice for drawing reflections on curved surfaces is to “just fake

it.” But if this is not understood, then the results will be far from convincing.

is is not to say that ploing reflections on curved surfaces is advocated; it

is extremely difficult and time-consuming. e previous information was

designed to give a basic understanding of the underlying science so that it

can be faked with confidence. Approximations should be based on educated

estimations, not on random guesses.

Again, it is helpful to purase a piece of reflective paper. is paper can

be manipulated to create a variety of curved shapes, whi can be a valuable

reference tool.



Figure 31.5 Plotting reflections on concave surfaces is difficult and prohibitively

time-consuming to have a practical application.



Figure 31.6 Reflections in convex mirrors ange dramatically depending on the

location of the real object.



Sphere

Ploing reflections on a sphere requires the same tedious process. e rules

of reflection still apply. Reflections on curved surfaces can be ploed by

hand—but it is not recommended (Figure 31.7). Like convex and concave

surfaces, the process is prohibitively time-consuming. Due to the exhausting

task, most art books simply ignore the topic. While it is not practical to plot

reflections on curved surfaces, it is empowering to have the knowledge—just

knowing may be enough. To create more convincing reflections, it is best to

find a reflective sphere to use as reference. Using a reflective curved surface

as a guide, along with an understanding of the science behind reflections,

will help you to create convincing images.



Figure 31.7 Sphere reflections are allenging, to say the least.
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Anamorphic Perspective

Anamorphic images came about early in the development of perspective.

Artists su as Piero della Francesca and Leonardo da Vinci experimented

with solutions to correct the distortion caused when looking obliquely at

ur frescos. As the congregation looked up at the frescos, the nearby feet

looked exceptionally large compared to the distant heads (Figure 2.4). A

solution to this problem was quily formulated. e desired image was

projected on the wall using a grid. is projected image corrected the

distortion. Anamorphosis is the process of projecting a flat image on an

oblique surface. Looking at this projected image from an angle other than

the one it was projected from results in a distorted drawing—oen to the

point of non-recognition. But the image comes into focus when seen from

the location it was projected from. Street artists use this tenique with

amusing effects in sidewalk alk festivals.

Beyond its practical use, anamorphosis is sometimes used as an

entertaining tri. An artist creates a mysterious skewed image; the viewer

must then find the vantage point that reveals the picture (Figures 32.1–32.2).



Figure 32.1 e anamorphic image comes into focus when seen from the proper

point of view.

Figure 32.2 Plotting an anamorphic grid.

Foreshortened Image

On a related subject, this tenology can be used to depict a flat image on a

foreshortened surface. For example, if drawing a picture hanging on a wall,



with this picture being foreshortened, this same procedure could be used in

reverse. Instead of the final image being streted, it is compressed. First, put

a grid on the picture being drawn, and then draw that same grid in

perspective. Use the grid as a guide to plot points (Figure 32.3).

Figure 32.3 To draw a foreshortened image, draw a foreshortened grid. Be sure to

adjust the thiness of the lines: they are foreshortened as well.
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Four-Point Perspective

Objects not aligned with the center of vision become distorted. e farther

they are from the center of vision the more distorted they become.

Distortion occurs when the visual pyramid intersects the picture plane at an

oblique angle. e more aslant the angle, the greater the distortion. But what

if the picture plane is not flat? What if the picture plane is curved? e

picture plane, aer all, does not need to be flat. If the picture plane is

cylindrical, the intersection of the visual pyramid will be at a right angle. e

viewer’s eye is at the center of the cylinder. Any line connecting to the

station point will intersect the picture plane at a 90° angle to its surface. If the

cylinder fully surrounds the viewer, a 360° panoramic view can be drawn

without the extreme distortion caused by a flat picture plane.

Using a curved picture plane still creates distortion, it is just a different

kind of distortion. With a curved picture plane, horizontal lines appear

curved in the final drawing. Vertical lines, however, are parallel with the

picture plane and are drawn as straight lines.

e picture plane, being circular, gives a 360° image area horizontally. But,

because the walls are flat, the standard 60° cone of vision still applies to the

vertical axis (Figure 33.1).



Figure 33.1 e picture plane is cylindrical in four-point perspective.

Four-Point Perspective Components

Vanishing Points

ere are four vanishing points, ea 90° apart. One at the center of vision,

one 90° to the right, one 90° to the le, and one directly behind the viewer.

To illustrate how these vanishing points function, draw a symmetrical

room with the viewer placed in the center. A vanishing point is centered on

ea wall (Figure 33.2).



Figure 33.2 A plan view showing the viewer, the picture plane, the room, and the

four vanishing points.

Image Area

e picture plane is cylindrical, but the drawing surface is two-dimensional.

So, the first step is to flaen the picture plane. e image area will be 360°

long and 60° high.

Length

To calculate the length, the circumference of the picture plane must be

known. is is a simple formula: multiply the diameter by pi (π). To do this,

measure the distance from the station point to the picture plane (the radius).

Multiply the radius by two (the diameter). en multiply the diameter by

3.14 (pi). e circumference of the picture plane is the length of the

panorama (Figure 33.3).

Height

e height of the panorama remains 60° from the station point. Use the

Pythagorean theorem to find the height. Or, draw an elevation view (to

scale), with a 60° cone of vision, and measure the height with a ruler (Figure

33.3, top right).



Figure 33.3 Calculating the length and height of the panorama.

e Drawing

e viewer is in the center of a square room. is means the walls are

equally spaced and the drawing can be divided into four even quadrants.

Ea quadrant represents the width on the wall. en, place a vanishing

point in the center of ea wall (Figure 33.4).

Figure 33.4 Divide into quadrants to find the four walls. Use a ruler, or draw an X

to divide by half. Add vanishing points centered in ea wall.



Horizontal Lines

Imagine a horizontal line of infinite length, at a right angle to the line of

sight. is line would disappear at the vanishing points that are 90° to the

right and le of the center of vision. If this line was on the ground, and it

was traced on the picture plane, it would curve up to connect with the

vanishing points (Figure 33.5). Lines above the eye level would curve down.

ese curves are not simple compass arcs—that would be too easy.

Figure 33.5 An infinite horizontal line traced on a cylindrical picture plane creates

sinusoid.



To plot this curve, the viewer’s eye level must be known (2 units above

the ground), as well as how far the viewer is from the picture plane (1 unit)

(Figure 33.6).

is line connects to the right and le vanishing points, and toues the

picture plane at the ground level. is gives three known points (Figure

33.6).

Figure 33.6 e first three points of the sinusoid are the “easy” ones to locate.

ese three points can be connected to draw an arc, but three points are

not enough to draw an accurate shape. At least two more points are needed.

Place these additional two points 45° on ea side of the center of vision.

Since the room is square, they will be aligned with the room’s corner (Figure

33.7).

Figure 33.7 Because the room is a square, the corners are 45° from the station point.

e points that are needed indicate the distance from the line being drawn

to the picture plane. is distance must be ploed. is can be accomplished



using the Pythagorean theorem, but there is also a longhand method that

does not require any math. Draw a plan view to scale, and with a ruler,

measure the distance from the station point to the picture plane and the line

being drawn (Figure 33.8, top le). Transfer those dimensions to an elevation

view drawn to the same scale, then measure the distance along the picture

plane (Figure 33.8, top right). Transfer that distance to the drawing (Figure

33.8, boom). Now there are five points available to plot the curve. Connect

the points to draw an arc. It is not a compass arc, but a sinusoid (Figure 33.8,

boom).

Figure 33.8 To plot an accurate curve, two additional points are needed.

Copy and repeat the curves, connecting ea to vanishing points. e

intersection of the lines creates a 90° corner (Figure 33.9).



Figure 33.9 Copy and repeat the lines, creating four orthogonal lines of infinite

length.

Copy and repeat the curves again, but this time connect ea line to a

point halfway between the four vanishing points. ese lines are at a 45°

angle (Figure 33.10). ese 45° angles will later assist in drawing the grid.

Figure 33.10 Plot a 45° angle using the procedure outlined in Figure 35.8.



Create an additional sinusoid behind the first, using the same procedure

(Figure 33.11).

Figure 33.11 Repeat the process to plot an additional horizontal line.

Copy and repeat the sinusoids to create a series of squares (Figure 33.12).



Figure 33.12 Copy and repeat the curves to make a grid.

Continue to copy and repeat until the four-point perspective grid is

complete (Figure 33.13).



Figure 33.13 Continue to copy and repeat the curves, finding intersections to

create a grid.

Mu of the grid that has been drawn is outside the cone of vision, outside

of the 60° vertical limit. at part of the grid is distorted beyond what is

acceptable and needs to be cropped (Figure 33.14).

Figure 33.14 e ceiling is a mirror image of the floor.



Creating a true four-point grid is not an easy task. To expedite the job,

many illustrators use a simple arc in place of the sinusoid, “eyeballing” the

shapes. is is far from accurate, but it does save a great deal of time.

Vertical Lines

Vertical lines are parallel with the picture plane and are drawn as true

verticals (Figure 33.15). Measure vertical lines as measured in one- or two-

point perspective. Measure up from the picture plane and project the height

to the desired location (Figure 33.16).

Figure 33.15 Crop the image and draw vertical lines on the walls where horizontal

lines intersect.



Figure 33.16 e eye level is 2 units above the ground. Divide the center line into

four even segments, creating a horizontal grid.

Finalize the grid by connecting lines to vanishing points (Figures 33.17–

33.18).

Figure 33.17 e completed grid.

As complicated as this diagram is, it is simpler than a diagram where the

viewer is not in the center of the room and the room is not a square. In this

scenario, the image can’t be divided into four even spaces. e length of

ea wall must be ploed separately.

Length

In this example, the room is rectangular. To plot the length of ea wall, start

with a plan view. Project the length of ea wall to the station point,

intersecting the picture plane (Figure 33.18). e picture plane is cylindrical

so approa width in terms of degrees.

e length of ea wall is represented on the picture plane as an arc, a

section of a circle. To find the length of ea wall, the length of ea arc

must be calculated (Figure 33.19). is next step requires a lile math. e

formula to measure the length of an arc is 2πR(C/360) where:

C is the central angle of the arc in degrees;

R is the radius of the arc; and

π is 3.14.

ere are several websites that offer calculators to solve this problem

(sear for “arc length circle calculator”).



Figure 33.18 Project the width of ea wall to the picture plane.

Unlike the previous drawing, the vanishing points are not centered within

ea wall. ey are still 90° apart and ploed using the same methods as

Figure 33.4. e grid for this asymmetrical room was drawn using the same

method as the previous symmetrical room (Figure 33.20). Using this method,

any environment can be accurately created and measured in four-point

perspective.



Figure 33.19 Plot the walls and vanishing point locations.

Figure 33.20 is grid was drawn by the same process used in Figures 33.6–33.18.

e le wall is touing the picture plane and the front wall is the farthest from

the viewer.

It should be noted that a 360° image is so foreign to the viewer’s eyes that

it is difficult for the brain to process. To create a more pleasing and

comprehendible picture, it is worth cropping the image area, keeping the

view within 180° (Figure 33.21).



Figure 33.21 is is a four-point perspective view, cropped a little beyond 90° (the

two vanishing points are 90° apart).

Vertical Four-Point

A four-point diagram turned sideways creates a vertical panorama. It

combines a bird’s-eye view with a worm’s-eye view. e view includes

what is below, in front, and above. is includes the floor, the wall facing the

viewer, and the ceiling above them. Vertical lines extend to vertical

vanishing points: one at zenith, and one at nadir. Horizontally, however, the

field of vision remains at 60° (Figure 33.22).



Figure 33.22 A vertical four-point perspective view cropped at 180°.
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Five-Point Perspective

Five-point perspective is a fisheye view, displaying everything from east to

west and from north to south. Everything in front of the viewer is depicted.

e picture plane is a hemisphere. Horizontal, vertical, and angled lines

projected on a hemisphere behave differently than when projected on a

cylinder. Before drawing a five-point image, how these lines appear when

projected on a sphere must be understood.

Five-Point Perspective Components

Horizontal Lines (y-Axis)

A horizontal line of infinite length would connect to vanishing points on the

horizon line: one at the extreme le and the other at the extreme right of the

sphere. e horizon line, being at the viewer’s eye level, is drawn as a

straight line. Horizontal lines not aligned with the eye level are curved. e

curve is a great circle (Figure 34.1).



Figure 34.1 Horizontal lines projected on a hemisphere connect to vanishing points

on horizon line 90° from the center of vision.

Horizontal Lines (x-Axis)

Horizontal lines parallel with the line of sight are drawn as a great circle,

with one vanishing point at the center of vision and the other directly behind

the viewer (Figure 34.2).

Figure 34.2 Horizontal lines projected on a hemisphere are half a great circle, one

vanishing point being the center of vision, the other behind the viewer (not



shown).

Vertical Lines (z-Axis)

Vertical lines are drawn as a great circle and have vanishing points at zenith

and nadir (Figure 34.3).

Figure 34.3 Vertical lines projected on a hemisphere are a great circle, with

vanishing points at the top and bottom of the picture plane.

Angled Lines

Angled lines have vanishing points at an angle corresponding to the line

being drawn. ey are also drawn as a great circle (Figure 34.4).



Figure 34.4 e vanishing points for angled lines are at the same angle as the line

being drawn, with vanishing points 180° apart.

Flattening A Sphere

Now that the theory of how lines appear when projected on a hemisphere is

understood, how are they drawn on a flat surface? e paper has only two

dimensions; the hemisphere has three. So, before these lines can be ploed

on the paper, the hemisphere must first be flaened. Flaening a round

surface is a problem that has plagued cartographers for thousands of years. It

is a problem that still exists today; it is a problem that cannot be solved.

Flaening a spherical surface, without distortion, is impossible. If a ball was

cut in half, and then flaened, the only way to accomplish this task would be

to tear, stret, or fold the ball. No maer the approa, the shape of the ball

will suffer. A cone or cylinder can be flaened without tearing, folding, or

streting. is is called a developable surface. A sphere is not a developable

surface. Any flat representation of a sphere will, by its nature, be distorted.

Over the centuries, cartographers and mathematicians have found a

variety of ways to limit this distortion. ere are well over fiy methods to

project a curved surface on a flat plane. e methods developed oen

diminish distortion in one aspect, while increasing it in others. Ea method



leads to different results. Depending on the application, one method is oen

more advantageous than another.

e best method for drawing purposes is an azimuthal projection. ere

are many different azimuthal projections; among them are gnomonic,

orthographic, stereographic, and equidistant.

Gnomonic Projection

e gnomonic projection is one of the oldest, dating to the sixth century BC.

While the center of the image has lile distortion, the edges of the sphere

are greatly streted. Additionally, this method cannot display a true 180°.

e outside edge of the sphere is at infinity (Figure 34.5).

Figure 34.5 Gnomonic projection.

Orthographic Projection



An orthographic projection puts the station point at infinity. As with

gnomonic projection, the orthographic projection is more accurate toward

the center of the sphere. But while the gnomonic projection stretes the

edges of the sphere, the orthographic projection compresses them. An

orthographic projection is like a photograph of the earth from space. e

land and water masses are foreshortened as the surface of the sphere recedes

and becomes more oblique to the viewer (Figure 34.6).

Figure 34.6 Orthographic projection.

Stereographic Projection

e stereographic projection places the station point at the far edge of the

sphere. e image is still distorted; the projected circumference of the sphere

is mu too large. But this is closer to the desired result (Figure 34.7).



Figure 34.7 Stereographic projection.

Azimuthal Equidistant

e azimuthal equidistant projection preserves the circumference of the

sphere. In addition, all lines from the center point are straight and have

correct angles. ere is still noteworthy distortion, as the diameter of the

sphere is considerably smaller than the diameter of the projection. For

drawing purposes, however, this is the best projection possible (Figure 34.8).

Figure 34.8 Azimuthal equidistant projection.

Five-Point Grid

Aer examining how lines of various orientations look when ploed on a

hemisphere, and discussing the best sphere projection possible, combine this

information to plot a five-point perspective grid.



Figure 34.9 Evenly spaced horizontal lines projected to the hemisphere, then

connected to the center of vision.

Horizontal Lines (x-Axis)

Lines parallel with the viewer’s line of sight, lines along the x-axis, appear as

true straight lines receding to the center of vision. To create a series of

evenly spaced lines receding in space, first draw a horizontal line along the

ground plane, divide the line into even spaces, then project ea increment

to the center of vision (Figure 34.9).

Lines on the z- and y-Axis

Vertical and horizontal lines on these axes are curved. ey are a great circle

when drawn on the picture plane, but not quite a great circle on the

drawing. ere is some distortion due to the equidistant projection method.

Considering this image is not a developable surface—and, therefore, can

never be truly accurate—it saves a great deal of time and effort simply to use

a compass arc. e shape of a compass arc is very close to the distorted ar.



Placement of Vertical Lines (z-Axis)

ink in terms of degrees when placing vertical lines in specific locations.

ere are 180° between the le and right vanishing points. Measure angles in

degrees, along the horizon line. For example, if using a line 45° to the right,

place a dot centered between the right vanishing point and the center of

vision (Figure 34.10, le). Vertical lines are drawn with a compass,

connecting to the vanishing points at zenith and nadir (Figure 34.10, right).

Figure 34.10 A vertical line 45° to the right of the center of vision.

Placement of Horizontal Lines (y-Axis)

Horizontal lines are approaed in the same way as vertical lines. Measure in

degrees, above or below the horizon line, to determine their placement. Use

a compass to connect to the le and right vanishing points (Figure 34.11).



Figure 34.11 Placement of horizontal lines are determined in degrees. e drawing

above illustrates a horizontal line 30° above the horizon, and a horizontal line 60°

below the horizon.

Create the Grid

Use a 45° vanishing point to create a series of squares (Figure 34.12). Repeat

the process to create a grid (Figure 34.13).



Figure 34.12 Create a series of squares using the 45° vanishing point.



Figure 34.13 Repeat the process to complete the grid.





Figure 34.14 A five-point grid turned 60°/30°.

Angled Grid

In the previous five-point example, the room’s front wall was oriented

perpendicular to the line of sight (equivalent to a one-point perspective

view). is room can be drawn at any angle by relocating the vanishing

points along the horizon line, but the vanishing points must remain 90° apart.

For example, to create a grid that is angled 60°/30° to the viewer, place a

point 60° from the far le vanishing point, and another point 30° from the far

right vanishing point (Figure 34.14, top le).

To measure squares, it is helpful to draw 45° angles in perspective. ese

angles are found from points placed on the horizon line, 45° from the

vanishing points (Figure 34.14, top right).

Create a vertical grid by using vertical measuring points (Figure 34.14,

boom le).
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Six-Point Perspective

Five-point perspective displays 180° of information, but it is only half of the

viewer’s environment. Six-point perspective adds the other half. A six-point

diagram is a full 360° view—everything surrounding the viewer is displayed.

e picture plane is a sphere, cut in half, and opened to show both ends.

e viewer sees the two halves. One half displays what is in front of the

viewer, and the other what is behind. e two halves can be displayed

staed or side by side. ere are six vanishing points, one in front of the

viewer and one behind, one above the viewer and one below, one to the le

of the viewer and one to the right. e two halves share top, boom, le,

and right vanishing points (Figure 35.1).

Creating a six-point grid is the same as creating a five-point grid, except it

is done twice.



Figure 35.1 Six-point perspective.
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Miscellaneous

Dividing Lengths

Dividing a length into a given number of spaces can be done with a ruler

and a lile math. A beer method involves using a ruler and a triangle. It is

fast, accurate, and no calculator is needed (Figure 36.1). is tenique only

works on lines parallel with the picture plane. It does not work on lines that

are foreshortened. It is an excellent tool to plot evenly spaced segments.

Another tenique (that does work with foreshortened lines) uses a

variety of methods to divide squares or rectangles into even segments. ere

are several methods, and ea result in a different number of divisions

(Figure 36.2).



Figure 36.1 Dividing a length into evenly spaced increments.

Figure 36.2 Dividing a rectangle or square into evenly spaced increments.



Figure 36.3 Teniques for multiplying distances.



Figure 36.4 An auxiliary vanishing point is a useful tool to create evenly spaced

divisions.



Multiplying Lines

If an existing line needs to be made longer by a given percentage, there are

a few methods that will assist in this endeavor (Figure 36.3).

Using an auxiliary vanishing point is an alternative method to create

evenly spaced segments (Figure 36.4).

Intersecting Forms

e shape created by two intersecting forms can be complex. Dozens of

examples can be presented, ea looking quite different, but ea solved

using the same basic method—cross-sections. Cross-sections can be used to

find the intersection of one form with another. For example, a dormer is the

intersection of one prism with another. To find this intersection, draw two

cross-sections. First bisect the roofline at the ridge (Figure 36.5, top le).

en draw another cross-section, at a right angle to the first, along the

centerline of the dormer (Figure 36.5, top right). e junction of the dormer’s

ridgeline to the building’s roofline is the intersection of the two shapes

(Figure 36.5, boom le).

Drawing the intersection of two curved shapes (or, for that maer, any

two shapes) uses the same method. Drawing more cross-sections creates

more intersections, and a more accurate shape (Figure 36.6).



Figure 36.5 Drawing the intersection of a dormer with a roof line.

Figure 36.6 Using cross-sections to draw curved intersecting forms.

Dividing A Circle



Dividing a circle into even segments has many applications (revolving doors,

spiral staircases, spoked wheels, etc.).

Decide on the number of segments needed, and divide that number by

360. For example, if dividing a circle into twelve even segments, ea will be

30° (360 ÷ 12 = 30). Transfer the segments from a plan view to a perspective

view (Figure 36.7).

Figure 36.7 Transfer evenly spaced segments from a plan view to an ellipse.



Glossary

Angle of Incidence. e angle between the light ray and normal.

Arc. A section of the circumference of a circle.

Artificial Light. Light from a source other than the sun or moon.

Bird’s-Eye View. An image where the viewer is looking down.

Bisect. Divide into two equal parts.

Center of Vision (CV). Where the viewer is looking. e focal point.

Circumference. e perimeter of a circle.

Cone of Vision. A 60° cone emanating from the viewer’s eye, intersecting

the picture plane, creating a circle around the center of vision. Objects

drawn outside this circle become noticeably distorted.

Congruent. Having the same angles or measurements.

Converging Light. Shadows resulting from an artificial light source.

Converging Lines. Parallel lines that connect to a single vanishing point.

Cross-section. e intersection of a three-dimensional form by a plane.

Cube. A prism with six square sides meeting at a right angle.

Cuboid. A rectangular prism with ea face meeting at a right angle.

Cylinder. A three-dimensional form with parallel sides and two circular

ends.

Diameter. A line that passes through the center of a circle with both ends

touing its circumference.

Diminution. e appearance of an object geing smaller as it moves further

away from the viewer.



Elevation View. A side view showing height and depth, or a front view

showing height and width. ere is no perspective, no diminution, no

foreshortening.

Eye Level (EL). e distance from the ground to the viewer’s eye. e

horizon line is always at the viewer’s eye level.

Field of Vision. e area that can be seen without the viewer turning their

head.

Five-Point Perspective. A 180° view of the world. e picture plane is half a

hemisphere.

Foreshortening. e apparent reduction in length of an angle due to the

position from whi it is viewed.

Four-Point Perspective. A panorama view up to 360°. e picture plane is a

cylinder.

Great Circle. A cross-section of a sphere that creates the largest diameter

possible. e circle intersects the center of the sphere.

Ground Line (GL). Generic: a line drawn on the ground plane. Shadows: the

angle of a shadow cast from a vertical line on a horizontal surface.

Ground Plane. e horizontal surface of the ground.

Hemisphere. Half a sphere.

Horizon Line (HL). e edge of the earth; the line that separates sky from

land.

Hypotenuse. e longest side of a right-angled triangle.

Isosceles Triangle. A triangle where two sides are of equal length.

Linear Perspective. A system using the rules of geometry to depict 3-D

space on a 2-D surface.

Light Angle (LA). e angle of the light ray to the ground plane.

Line of Sight. An imaginary line indicating the direction the viewer is

looking.

Major Axis. e longest distance across an ellipse.



Measuring Point (MP). A point that transfers the distance of a

foreshortened line to a line parallel with the picture plane, creating an

isosceles triangle.

Minor Axis. e axis through the center of the ellipse, 90° to the elliptical

plane.

Natural Light. Light from the sun or moon.

Negative Shadows. When a natural light source is located behind the

viewer.

Normal. A line at right angles to a reflective surface.

One-Point Perspective. Vertical and horizontal dimensions are parallel with

the picture plane. Foreshortened lines converge to the center of vision.

Orthogonal Lines. Lines at right angles.

Orthographic. Representing a three-dimensional form using two-

dimensional (plan and elevation) views.

Parallel Light. When a natural light source is 90° to the line of sight.

Peripheral Vision. e visual area outside the cone of vision.

Perpendicular. Two lines intersecting at 90° angles.

Plan View. A top view showing width and depth. ere is no perspective,

no diminution, no foreshortening.

Plane. A flat surface.

Picture Plane (PP). A transparent plane between the viewer and the world.

Polygon. A closed plane formed by three or more line segments.

Positive Light. When a natural light source is in front of the viewer.

Prism. A three-dimensional form with two parallel and congruent bases.

Pythagorean eorem. e square of the hypotenuse is equal to the sum of

the squares of a right-angled triangle’s other two sides.

Radius. e distance from the center of a circle to the circumference.



Reference Point (RP). A point used to move objects forward or baward in

space.

Right Angle. A straight line that is 90° at its point of intersection with

another straight line.

Six-Point Perspective. A 360° view of the world. e picture plane is a

sphere.

Sphere. A three-dimensional form where every point of its surface is an

equal distance from its center.

Station Point (SP). e viewer’s eye.

ree-Point Perspective. No sides of the object are parallel with the picture

plane. e center of vision is above or below the horizon line.

Two-Point Perspective. Vertical dimensions are parallel with the picture

plane. Horizontal dimensions are foreshortened and connect to right and

le vanishing points.

Vanishing Point (VP). A point at infinity where objects disappear.

Worm’s-Eye View. An image where the viewer is looking up.
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Page numbers in italics indicate an illustration

Alberti, Leon Baista 1, 2, 11, 154, 155–7, 155–7

anamorphic perspective 313, 313–15, 315

arc 136, 137

artificial light: shadow components 276, 277–9, 279

three-point shadows 291, 291–2

auxiliary horizon line (AUX. HL) 91, 94

auxiliary measuring point 99, 101

auxiliary measuring point (AUX. MP): inclined cuboids 116, 116

inclined planes 91, 94, 96, 99, 101

rotating forms 140–1, 140–1

vertical location 121–3, 121–5

auxiliary vanishing point (AUX. VP): falling and rotating forms 136, 138

inclined cuboids 108–9, 109, 114, 114–15

inclined planes 91, 92–3, 96, 98, 99

lines, multiplying method 345, 346

azimuthal equidistant 334, 334

azimuthal projections 331–4, 332–4

bird’s eye view 173, 173, 175, 280–1, 281

Brunellesi, Filippo 154

Cartesian coordinate system: axis representation 215

one-point angles 215, 215

x-axis 215, 216–18, 217

y-axis 217, 217–21, 219

center of vision (CV) 5, 5, 176, 176–7

centric point 2

circle, dividing methods 347, 347

combining, one and three-point 226, 226

one-point diagram 227, 227–9

rotation of object 233, 233



superimposing diagrams 230–2, 230–2

combining, three-point 243, 244

combining, two and three-point: rotation of object 241, 241–2

superimposing diagrams 236–40, 236–40

two-point box 234, 234–5, 236

cone of vision: definition 5–6, 6

ellipses and distortion 66, 66

one-point perspective diagram 18, 18

outside object and distortion 11, 12, 13

station point (SP) 159, 177

three-point perspective 177, 189, 189

congruent angles 274, 274

converging light see artificial light

curved surfaces 88, 88, 136, 137

reflections 306, 306–10, 308, 311, 312

shadows 269, 269

curvilinear perspective (fish-eye) 15, 15

depth, measuring: Alberti’s method 155, 155

box, rotating form 142, 142

one-point perspective diagram 20, 20–1

perspective combinations 231, 231

plan/elevation view perspective 168, 168

three-point angles 205, 205

two-point perspective 39, 40

distant vanishing point: grid approa 129–31, 129–31

inclines 133, 133

measuring tenique 132, 132

plan/elevation view perspective 170, 170–2

protractor, use of 134, 134

distortion: cone of vision 11, 12, 13

ellipses 66, 66

four-point perspective 316

spheres 79, 80

Dürer, Albret 4, 4, 12

elevation view: complicated inclines 135, 136, 148, 148

definition 8, 8

one-point diagram 155–6, 155–6

one-point inclines 103–4, 104

plan/elevation view perspective 158–62, 158–62



random curves 88, 88

two-point inclines: alternative method 106, 106

ellipses: distortion 66, 66

drawing mistakes 65, 65

eight-point measured 69, 69

eight-point ploed 66, 67–8

eight-point projected 70, 70

ellipse guides 74, 74–5

four-point 65–6, 65–6

horizontal 75, 75

one-point vertical 76, 76

spiral forms 82, 82–5

tapered forms 79, 79, 149, 149, 152–3, 152–3

twelve-point 71, 71–2

twenty-four point 73, 73

two-point vertical 76, 77–8

Ey, Jan van 15, 15

eye level (EL) 3, 7, 7, 225, 225

falling and rotating forms: arc of travel 136, 136–8

axis point and angles 135, 136

boom box, drawing 139–45, 139–45

middle box, drawing 146, 146

top box, drawing 147, 147

five-point perspective: angled grid 339, 340

components 329–31, 329–31

five-point grids 335–7, 335–9

flaening a sphere, methods 331–4, 332–4

orientation 15, 15

fixed center 1, 2, 4, 4

four-point perspective: components 317, 317

distortion 316

horizontal and vertical dimensions 14, 14, 316, 316

picture plane (PP) 316, 316

rectangular room, drawing process 326, 326–8, 328

square room, drawing process 318–21, 318–26, 324–6

vertical four-point 328, 328

geometry, measuring point 57–8, 57–8, 126, 126–8

inclines 119, 120

gnomonic projection 332, 332



grids: distant vanishing point 129–31, 129–31

five-point perspective 335–7, 335–9, 340

four-point perspective 317–28, 317–28

one-point perspective 31–2, 32, 157, 157

two-point perspective 52–3, 53–6, 55–6

ground line (GL) 158–9, 159, 254, 280, 284

ground line measuring point (GLMP) 272, 272, 275, 275

ground line vanishing point (GLVP) 271–2, 271–2, 275, 275, 276, 277–9

ground plane 5, 193–5, 193–6 see also measuring line (ML)

height, measuring: box, rotating form 143–4, 143–4

one-point perspective diagram 22, 22

perspective combinations 232, 232

plan/elevation view perspective 169, 169

tapered forms 150–1, 150–1

three-point bird’s-eye view 192–4,192–4, 204, 204

three-point worm’s-eye view 195, 195–6

two-point perspective 41, 41

history 1–2, 154–5

value 1

horizon line (HL): auxiliary horizon line (AUX. HL) 91, 94

definition 3, 3

one-point perspective diagram 17

relative terms 5, 5

horizontal angles: door and its threshold 61, 61–4, 63–4

true and perspective 59–60, 59–60, 198, 198

horizontal measuring line (HML) 190, 190

incline, compound 245–9, 245–53

inclined cuboids: one-point perspective 107–10, 107–12, 112

two-point perspective 113–14, 113–18, 116, 118

inclined planes: concept realisation 89

distant vanishing point 133, 133

downward 96, 96–7, 102, 103

measuring one-point 94, 95

one-point inclines 90, 91, 92, 103–4, 104–5

reflections 298, 299–304

two-point inclines 98, 99, 100, 106, 106

upward 91, 93–4, 99, 101–2

incline geometry: measuring line (ML) 119, 120

measuring point locations 126, 126–8



vertical auxiliary measuring points 121–3, 121–5

intersecting forms 346, 346–7

isosceles triangle 2, 57–8, 57–8, 119, 120

le axis point (LAP) 211, 211

le axis, three-point angles 211, 211–14

le measuring point (LMP) 37, 39, 179, 179

le reference line (LRL) 176, 176–7

le reference point (LRP) 176–7, 177

le station point (LSP) 177–8, 177–8

lengths, dividing methods 342, 342–3

light angle (LA) 254

light angle vanishing point (LAVP): location 279

positive and negative shadows 271–2, 271–2, 274, 274

three-point shadows 280–2, 281–90, 284, 286, 288

lines, multiplying methods 344–5, 346

Masaccio 2

measuring line (ML): applications 7

definition 7

one-point perspective diagram 19, 19

three-point angles 209, 209, 213

three-point perspective 190, 190

measuring point (MP): definition 2, 7

incline geometry 126, 126–8

one-point perspective diagram 18, 18

three-point angles 200, 200–1, 208, 208, 212

three-point perspective 179–80, 179–85, 183

see also auxiliary measuring point

natural light: negative shadows 273–5, 273–5

three-point negative shadows 286–7, 286–7, 288–90, 288–90

positive shadows 270–2, 270–2

three-point positive shadows 284–5, 284–5

object: picture plane dynamics 10, 10

plan/elevation view perspective 159, 159

vertical axis, three-point angles 202–5, 202–5

one-point perspective: box, drawing of 22, 23–6, 24, 26–7

diagram construction 17–19, 17–19, 156, 156

horizontal and vertical dimensions 11–12, 11–12



measuring dimensions 19–20, 19–22, 22

measuring in front of picture plane 27–8, 27–30

one-point grid 31–2, 32, 157, 157

perspective combinations 226–7, 227–33, 230–2

orthographic projection 333, 333

peripheral vision 5, 6

picture plane (PP): art production 1, 2, 4

definition 4

dynamics 8–9, 9–10

five-point perspective 15, 15

four-point perspective 14, 14, 316, 316

six-point perspective 16, 16

three-point perspective 174, 174

plan/elevation view perspective: diagram components 158–9, 158–9

diagram construction 160–2, 160–2

distant vanishing point 170, 170–2

objects not touing picture plane 163–4, 163–4

two-point plan/elevation 166–9, 166–9

plan view (PV): definition 8, 8

plan/elevation view perspective 158–62, 158–62

random curves 88, 88

reference lines 176, 176–7

reference points (RP) 33, 34–6, 176–7, 177

reflections: concave surfaces 308, 309–10

convex surfaces 306, 306–8, 308

inclined surfaces 298, 299–304

laws of 305, 305

one-point perspective 293–4, 293–6

spheres 311, 312

two-point perspective 296, 297

right axis point (RAP) 206, 206

right axis, three-point angles 206–10, 206–10

right measuring point (RMP) 37, 39, 180, 180–2

right reference line (RRL) 176, 176–7

right reference point (RRP) 176, 177

right station point (RSP) 180, 180–2

shadows: artificial light 254, 276, 277–9, 279

components 254



curved surfaces 269, 269

ground line (GL) 254

light angle (LA) 254

natural light 254

negative, natural light 273–5, 273–5

parallel 256, 256

positive, natural light 270–2, 270–2

round and curved objects 263, 263–6

rules and surfaces 255, 257–9, 257–62, 261–2

spheres, of and on 267–8, 268

shadows, three-point: artificial light 291, 291–2

light source location 288, 288–90

negative 286, 286–7

parallel, bird’s-eye view 280–1, 281

parallel, worm’s-eye view 282, 282–3

positive 284, 284–5

six-point perspective 16, 16, 341, 341

spheres: distortion 79, 80

drawing using cube 79, 81, 81

flaening, drawing methods 331–4, 332–4

reflections 311, 312

shadows, of and on 267–8, 268

spiral forms: drawing tenique 82, 82–5

spiral staircase 86, 86–7

station point (SP): art production 4

definition 3

horizontal angles 59–60, 59–60

le (LSP) 177–8, 177–8

one-point perspective diagram 17, 17–18

picture plane dynamics 8, 9

plan/elevation view perspective 158–9, 159

right (RSP) 180, 180–2

three-point perspective 177, 186–8, 187

two-point perspective 37, 38–9;

vertical (VSP) 183, 183–5, 224, 224

stereographic projection 333, 333

tapered forms: drawing using ellipses 79, 79

tilted 148–53, 148–53

terms: center of vision (CV) 5, 5

cone of vision 5–6, 6



elevation view 8, 8

eye level (EL) 3

horizon line (HL) 3, 3

isosceles triangle 2

line of sight 3, 4

measuring line (ML) 7, 7

measuring point (MP) 2, 7

object 10, 10

picture plane (PP) 1, 2, 4, 4, 8, 9

plan view (PV) 8, 8

station point (SP) 3, 8, 9

vanishing point (VP) 2, 5, 5

three-point angles: axes 197, 197–8

Cartesian coordinate system 215, 215–21, 217, 219, 221

le axis 211, 211–14

right axis 206–10, 206–10

three-point diagrams 222–5, 223–5

vertical axis 198–200, 198–205, 202–5

three-point perspective: angle of object 223–4, 223–4

angle of sight 222, 223

cube, drawing dimensions 191–3, 191–3

cube, worm’s eye view 194, 194–6

diagram components 174, 174–5

diagram construction 176–80, 176–90, 183, 187, 189–91

one-point combinations 226–7, 227–33, 230–2

orientation 13, 13, 173, 173

three-point combinations 243, 244

two-point combinations 234, 234–42, 236

two-point perspective: box, drawing of 49–52, 49–52

diagram construction 37, 38–9

distant objects 45, 46–7

horizontal and vertical dimensions 12, 12

measuring behind the picture plane 42–5, 43–5

measuring dimensions 39–41, 40–1

measuring in front of picture plane 47–8, 47–8

perspective combinations 234, 234–42, 236, 241

two-point grids 52–3, 53–6, 55–6

Urbino, Carlo 13

vanishing point (VP): centric point 2



definition 5

distant (off page) solutions 129–34, 129–34

four-point perspective 317, 317

ground line (GLVP) 271–2, 271–2, 275, 275, 276, 277–9

light angle (LAVP) 271–2, 271–2, 274, 274, 279

relative terms 5

three-point angles 198–9, 198–9, 207, 207, 211

three-point perspective 174, 175

three-point shadows 280–2, 281–7, 284, 286

two-point perspective, le and right 37, 38–9, 166, 166

see also auxiliary vanishing point

vertical axis point (VAP) 198, 198

vertical axis, three-point angle 198–200, 198–205, 202–5

vertical measuring line (VML) 190, 190

vertical measuring point (VMP) 183, 183–5, 193

vertical reference line (VRL) 176, 176–7

vertical reference point (VRP) 176, 177, 193

vertical station point (VSP) 177, 183, 183–5, 224, 224

visual pyramid 1, 2, 4

Vredeman de Vries, Jan 89

width, measuring: Alberti’s method 155, 155

one-point perspective diagram 19, 19

perspective combinations 229, 229

three-point angles 203, 203

worm’s-eye view 194, 194

worm’s-eye view: ground plane, establishing 194–5, 194–6

three-point perspective 13, 13, 173, 173

three-point shadows negative 287

three-point shadows parallel 282, 282–3

three-point shadows positive 285

vanishing points 175
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