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The Complete Guide to Perspective Drawing

Computers can calculate perspective angles and create a drawing for us, but
the spontaneity of mark-making, the tactile quality of a writing surface, the
weight of a drawing instrument, and the immediacy of the human touch are
sensations that keep traditional drawing skills perpetually relevant. The
sensuality and convenience of the hand persists and will survive as a
valuable communication tool, as will the need to accurately express your
ideas on paper. As a professional, understanding the foundations of drawing,
how we process images, and how we interpret what we see are principal
skills. Understanding linear perspective enables artists to communicate their
ideas accurately on paper. The Complete Guide to Perspective Drawing offers
a step-by-step guide for the beginner as well as the advanced student on
how to draw in one-point through six-point perspective and how to make
scientifically accurate conceptual illustrations from simple to complex
situations.

Craig Attebery is a native southern Californian. He received a BFA with
Honors from ArtCenter College of Design, USA, in 1980, and an MFA from
Otis/Parsons Art Institute, USA, in 1984. Craig has worked as a freelance
illustrator for advertising agencies, science books, and the entertainment
industry, as well as creating conceptual art for JPL/NASA and the aerospace
industry. Craig’s illustrations have appeared in many publications including
Newsweek and Time magazines. In addition to his commercial work, he has
participated in exhibitions at galleries and museums throughout the country
and internationally, including the Fry Museum (Seattle, WA), the Arnot
Museum (Elmira, NY), the Art Museum of South Texas (Corpus Christi, TX),
and the Oceanside Museum (Oceanside, CA). His work is in the permanent
collection of the de Young Museum (San Francisco, CA). Craig is a faculty
member at ArtCenter College of Design where he has taught perspective for
over fifteen years.



“This is the comprehensive book on how to see and utilize perspective that educators
and serious students of the subject have been waiting for! It covers every aspect of the
perspective problems creative artists might encounter, providing multiple solutions
and concise explanations illustrated with hundreds of easily read drawings. The
reader is connected to the historical background of perspective in art and science,
taught how to transfer what is seen or imagined into two dimensions, and delivered a
source of reference that will endure for decades.”

—F. Scott Hess, artist and Associate Professor of Painting for Laguna College of Art + Design’s
MFA and BFA programs
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Preface

[ tried to look relaxed as I sat across from the interviewer—fresh out of my
sophomore year at art school, hoping to land a summer job doing artwork of
some kind, any kind; I wasn’t picky. The interviewer looked tired. His
questions were delivered with a fatigued voice; a voice that seemed to have
echoed the same question to countless interviewees. “We are looking for
someone who can do perspective drawings. Can you do perspective
drawings?” he asked. It was a straightforward question that solicited a
straightforward answer. I knew any hesitation would belie an affirmative
reply. I had to react quickly. My choice was clear: tell the interviewer I was
up to the task, or tell the truth. Knowing the latter reply would end the
interview, and feeling I had nothing to lose, I decided to ... well, stretch the
truth. I struggled for the first few years, trying to teach myself the finer
aspects of perspective and not get fired in the process. A decade later I was
still working for the same company, still doing perspective drawings, and
finally feeling secure in my perspective abilities. So much so that when I was
asked to teach a class in perspective, I was confident that I knew my stuff.

But then came the students’ questions. And with them came the
realization that I was not as knowledgeable about perspective as I had
thought. My students asked challenging questions. Trying to find answers to
these questions in publications and online sources led me nowhere. Sources
that answered elemental perspective concepts were ubiquitous, but— beyond
the basics—information was scarce. Once again, I was on my own figuring it
out.

Perspective theory can be challenging. Having a detailed publication to
refer to is invaluable. At the college where I teach, ArtCenter College of
Design, the students are known for their passion and resolve. I knew a basic
perspective text would not answer their questions—or be up to their
standard. So, I made my own set of handouts. It was only a few pages at
first, covering some of the more complicated aspects, the aspects that would



solicit the greatest number of questions from my students. Writing a book
was the furthest thing from my mind. Whenever a student was having
difficulty applying a procedure, I would create a handout addressing that
subject. The number of handouts grew; the small set of handouts soon
became a stack. After fifteen years of teaching perspective, I had created
several hundred handouts. When I showed them to a colleague he said,
“These are not handouts—this is a book!”

Well, it wasn’t really a book, at least not yet. It still took some additional
coaxing from students, and a timely call from Routledge Press, before the
handouts were at last assembled, finalized, and transformed into this
publication: The Complete Guide to Perspective Drawing.

[ want to thank all my students for their patience, thirst for knowledge,
and continual appeals for additional handouts. A special thanks to Nancy
Tsai for being so generous with her time, Tanya Preston for sorting out my
prose, my family for tolerating my countless hours staring at a computer
screen, and my dog for intently listening to my ramblings about perspective.



Abbreviations

AUX. HL
AUX. MP
AUX. VP
CV
EL
GL
GLMP
GLVP
HL
HML
LA
LAP
LAVP
LMP
LRL
LRP
LVP
LSP
ML
MP
PP
RAP
RMP
RP

Auxiliary Horizon Line
Auxiliary Measuring Point
Auxiliary Vanishing Point

Center of Vision
Eye Level
Ground Line
Ground Line Measuring Point
Ground Line Vanishing Point
Horizon Line
Horizontal Measuring Line
Light Angle
Left Axis Point
Light Angle Vanishing Point
Left Measuring Point
Left Reference Line
Left Reference Point
Left Vanishing Point
Left Station Point
Measuring Line
Measuring Point
Picture Plane
Right Axis Point
Right Measuring Point

Reference Point



RRL
RRP
RSP

Right Reference Line
Right Reference Point
Right Station Point
Right Vanishing Point
Station Point
Vertical Axis Point
Vertical Measuring Line
Vertical Measuring Point
Vanishing Point
Vertical Reference Line
Vertical Reference Point
Vertical Station Point
Vertical Vanishing Point

x-Axis Point



Introduction

How important is it to learn linear perspective? Computers can calculate
perspective angles and create a drawing for us, so what need is there to learn
it traditionally?

To begin with, pencils and paper are not going away soon. The freedom
and spontaneity of mark-making, the tactile quality of a writing surface and
drawing instrument, and the immediacy and convenience of the human
touch will forever remain seductive. The sensuality of the hand persists and
will survive as a valuable aid to visual communication, as will the need to
place your ideas accurately on paper. Furthermore, knowledge is
empowering. As a professional, understanding the foundations of drawing,
how we process images, and how we interpret what we see are principal
skills. This knowledge transfers directly to your drawings, giving them an air
of confidence. If you understand the geometry of lines you have a powerful
tool to create believable images.

You can avoid learning perspective—but only for a while. Those pesky
drawing problems will continue to surface: the misguided lines, the
trapezoidal buildings, the awkward ellipses, the floating figures, the shapes
that, well, just look “off” The problems seem endless. You realize it is time to
end your procrastination. It is time to learn perspective. This realization is
typically accompanied by a heavy sigh, for learning perspective can be
overwhelming. Take a deep breath. Give yourself time to let the material
sink in. It takes practice. It also takes an abnormal amount of left-brain
thinking; at least, more than most artists like to do. Approach the material
one problem at a time, from the simple to the complex, step by step. Have a
solid understanding of the basics before you progress to the advanced.

I have tried to strike a balance between showing and explaining, so the
descriptions and the images work together. Some readers connect with
written descriptions, others (like me) connect with images. Both are needed
to some extent. Describing the diagrams in prose is often a difficult task. I



have tried to avoid describing the obvious; unnecessary wordiness attributes
to confusion and tedium. In some cases, the reader may not need the
descriptions at all—the drawings may tell the story.

Start at the beginning of this book, as the information builds on previous
chapters. Without the foundations supplied in the earlier sections, the rest of
the book may be perplexing. There are step-by-step guides for each
drawing. The instructional illustrations use basic geometric shapes as
placeholders for real world objects. Depending on its proportion and scale, a
cuboid can represent a building, a car, or a person. All objects can be
reduced to simple geometric forms. You may wish to use colored pencils to
color-code the procedures. Practice by using the worksheets (available as a
download from the Routledge website). As you advance through the book it
may be helpful to review previous sections. This will ensure you don’t forget
what you have learned. Reviewing the material also assists in gaining a
deeper understanding of the procedures. Keep in mind that there are many
solutions to any given problem. There is no one correct procedure. There is,
however, only one correct answer, one correct result—just different ways to
achieve it.

After becoming well-versed in perspective theory, you will be able to find
various solutions to any given problem. These solutions become evident
when you understand the “whys” as well as the “hows.” I want this book to
illustrate how to draw accurately, but also to explain why the procedures
work the way they do. I have attempted to create a book for beginners and
for the advanced. I want to tackle the difficult problems as well as the basic
problems, to create (as much as possible) a complete perspective book. That
being said, it is impossible to include solutions to every scenario. The
purpose of this book is to give you the information needed to extrapolate
from the given samples, and to find a resolution to specific problems not
addressed here. Remember: with knowledge, there is nothing too difficult to
draw.

Tools of the Trade



Here is a list of equipment you will find useful. Perspective drawing requires
precise angles and dimensions. Having the proper tools and understanding
how to use them is important to creating successful images. You will need:

e A drawing/drafting board. The type with metal edges designed to
accommodate a T-square.

e A T-square. A T-square is designed to draw parallel horizontal lines.

e 45° and 30°/60° triangles. In addition to creating these angles, they are
also used to draw vertical lines.

e A protractor. Useful to draw angles other than those drawn by the
triangles.

e A ruler. One made out of transparent material is best.

e Color pencils. Perspective drawings can become complicated. Color
coding your procedures is a helpful technique.

e A sharpener. Keeping a nice point on your pencils is important.

e Tracing paper. Working with overlays is another method to keep
elements in your drawing organized.

e A compass. A beam compass is also useful for making circles and
arcs that are too large for a standard compass.

e Drafting tape. Keep your paper securely fastened to your drawing
board.

e An eraser. For that rare occasion when you make a mistake.




1
Basic Perspective Terms

A painting is the intersection of a visual pyramid at a given distance with a fixed
center.

—Leon Battista Alberti, On Painting, 1435

This quote is far from the romantic verse commonly used to describe
creative endeavors. Nonetheless, Alberti’s clinical delineation encapsulated a
revolutionary transformation in art production: a revolution based on
science. No longer did artists need to base their images on speculation and
assumption, on convention and estimation. Artists could now depend on
verifiable data. Art and reason became allies.

As perspective’s value became apparent, so did its deft requirements.
Perspective procedures can be challenging. The alternative—drawing without
perspective techniques— is merely guesswork. Perspective’s most valued
asset is its ability to portray objects accurately, to assess dimensions, and to
project those dimensions spatially. Perspective produces an uncompromised
image, sometimes a surprising image. Drawing is often anti-intuitive, and
shapes can appear different than expected. It is not a requirement to plot all
images using perspective guidelines, but by practicing perspective
techniques, a sense of how foreshortened shapes present themselves can be
developed. Then, when the artist is sketching from observation or
imagination, the skillset learned from studying perspective becomes a
valuable tool to base their estimations on.

The word perspective derives from the Latin perspirere—to look through.
Alberti’s definition arose from the realization that, when a sheet of glass is
placed between the viewer and the world and then the view is traced, the
perspective is flawless. This vision—as self-evident as it may seem—changed
art production forever. Alberti’s statement is concise but his terms are
abstract, so they will be examined further.



The equation consists of a viewer, a sheet of glass, and an object to be
drawn. The viewer is Alberti’s “fixed center” It is fixed because the viewer
must remain stationary. A drawing cannot begin from one point of view and
be finished from another, because a different location results in a different
image.

Light makes the world visible. Rays of light reflect from objects and
project onto the retina, converging at the viewer’s eye. This is Alberti’s
“visual pyramid” The rays “intersect” the sheet of glass (known as the
picture plane). The intersection of these rays on the picture plane creates the
projected image seen—a perfect representation of the world (Eigure 1.1).

Picture plane

\ Intersection
Fixed center

Visual pyramid

S

/ /I

:
Figure 1.1 The intersection of the picture plane within Alberti’s “visual pyramid.”

From its inception, perspective was met with resistance. Change is
difficult; artists had been creating images for hundreds of years without
perspective. Painters found this new method of spatial organization difficult,
confusing, and, frankly, unnecessary. But some early converts (one of the
most noted being Masaccio, 1401-1428) embraced the new technology with
breathtaking results. Others waited, but eventually the popularity of these



new and exciting images forced those holding out to convert. The
procedures were daunting. But to compete as an image maker in this new
world required a new prerequisite: perspective proficiency. Alberti’s
procedures will be explored further in Chapter 15.

Perspective has evolved over several hundred years to the modern
approach used today, based on geometry. The only knowledge the artist
requires for perspective drawing is how to read a ruler, that there are 360° in
a circle, and what an isosceles triangle is (a triangle with two sides of equal
length). Mastering the thirteen books of Euclid’s Elements is not required to
understand perspective.

As the understanding of geometry and its relationship to perspective
evolved, so did the methods. Perspective terms have also changed since 1413.
For example, 600 years ago the term vanishing point did not exist, it was
called a centric point. The language of perspective has evolved—as all
language does—and today the term centric point has vanished. Likewise, the
term distance point was once used for what is now called a measuring point
(MP). Variations in terminology still exist. When perusing publications that
discuss perspective, different terms may be used to describe the same thing.

Basic Terms

To begin, some basic perspective terms will be defined. These terms are used
throughout the book, so it is important that their meaning and function is
understood.

Station Point (SP)

The station point represents the viewer, specifically the viewer’s eye. A
perspective drawing is created using only one eye. Creating a perspective
drawing using a pair of eyes would result in two slightly different images. A
stereographic (3-D) image is made using two station points. A single image
requires a single station point. It is called a station point because it must
remain stationary (the station point is Alberti’s “fixed center”).



Eye Level (EL)

The eye level is the distance from the ground to the viewer’s eye.

Horizon Line (HL)

The horizon line is the edge of the earth, where ground meets sky:.

The edge of the earth is aligned with the viewer’s eye level. Whether
flying in a plane or sitting on the ground, the horizon is always at eye level.
Why is this? The following exercise will explain. Stand in front of a piece of
glass, place a small object on the ground, and trace its position on the glass.
Then place the object farther away and trace its new position. It is now
higher on the glass (closer to eye level). The farther away an object is, the
higher it will appear on the glass. Objects move up the glass as they move
farther away. At some point, depending on its size, the object will no longer
be able to be seen. Larger objects can be seen from a greater distance and
are thus higher on the glass. They appear closer to eye level. If something is
very large, and is very far away, it will disappear at eye level. For example,
the edge of the Earth disappears at eye level, at infinity (Figure 1.2).

_ tineofsight ———

EL<

™

Figure 1.2 As the dots move farther from the picture plane, they become closer to
the eye level. Objects at infinity, like the horizon line, are depicted at eye level.
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Figure 1.3 Albrecht Diirer, Underweysung, 1525. This etching shows the picture
plane (the frame), the station point (the hook attached to the wall), and the visual
pyramid (the string attached to the lute).

Picture Plane (PP)

The picture plane is an imaginary window positioned between the viewer
and the world (Figure 1.2). It is always 90° to the line of sight (the exception
being anamorphic perspective). The orientation and shape of the picture
plane defines the type of perspective. If the picture plane is perpendicular to
the ground, objects are in one- or two-point perspective. If the picture
plane is angled to the ground, objects are in three-point perspective. In
four-, five-, and six-point perspective the picture plane is curved.

Albrecht Diirer created a perspective machine that demonstrated Alberti’s
theory and how the picture plane, station point, and visual pyramid function
(Figure 1.3). One end of a string was attached to the wall (fixed center), and
another to the object (in this example, a lute). The string represented the



visual pyramid. Using movable cross hairs fixed to a frame, the intersection
of the string to the picture plane was plotted. The frame represented the
picture plane. When the cross hairs were in position, the string was removed.
The hinged door was closed, and a dot placed where the cross hairs aligned.
The door was then opened, the string was attached to a different spot on the
lute and the process was begun again. This was not only tedious, but
apparently a two-person job.

Picture plane (PP)

L~

Figure 1.4 This illustration shows the relationship between the station point,
picture plane, eye level, horizon line, and vanishing point.

Center of Vision (CV)

The center of vision is where the viewer is looking (also known as the focal
point).

In one- and two-point perspective the line of sight is parallel with the
ground plane, and the center of vision is on the horizon line. In three-point
perspective the line of sight is angled to the ground plane and the center of
vision is above or below the horizon line.

In day-to-day activities, a person’s focus darts from place to place as they
assess their surroundings. A perspective drawing, however, is from a specific



focus point. Because the viewer can only look at one place at a time, they
can only have one center of vision.

Vanishing Point (VP)

The vanishing point is at infinity. Objects get smaller as they recede in space,
therefore at infinity all objects disappear. Parallel lines of infinite length
appear as converging lines and connect to the same vanishing point.
Vanishing points can be on the horizon line, above the horizon line, or below
the horizon line. There can be an unlimited number of vanishing points, but
there is only a single one-point vanishing point. This single point is always
located at the center of vision. Figure 1.4 demonstrates how the vanishing
point and previously discussed terms relate to each other.

Cone of Vision

A person can focus on only a small area, about 2° of the surrounding
environment. Peripheral vision, however, is quite large, beyond 180°. The
cone of vision lies between them (Figure 1.5). The cone of vision is a 60°
circle that defines the viewer’s image area (the area to be drawn within). The
center axis of this circle is the focal point. Imagine looking through a cone
with a 60° angle centered along its axis. Its intersection with the picture
plane creates a circle that defines the size of the cone of vision (Figure 1.6).
The farther away the viewer is from the picture plane, the larger the cone of
vision and the circle become. Beyond the confines of the 60° cone, distortion
becomes problematic. Shapes look stretched, tilted, and corners no longer
look like right angles. The cone of vision is drawn to warn the artist that
excessive distortion waits beyond its border. Inside the 60° cone, distortion
still exists, but is less apparent.



Center of vision
A
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Cone of vision

Peripheral vision Peripheral vision

Eye

Figure 1.5 Peripheral vision is beyond 180°. The cone of vision is 60°, and the focal
areais 2°.



Figure 1.6 The cone of vision is 60° from the station point.

Measuring Point (MP)

The measuring point is a tool used to measure foreshortened lines. Every
vanishing point has a dedicated measuring point. Before perspective,
measuring was a guessing game. Understanding how math relates to
drawing enabled artists to draw accurate dimensions. The placement of a
measuring point is specific and determined by geometry. Calculating
measuring points is discussed further in Chapter 3.

Measuring Line (ML)

The measuring line is the ruler and determines the drawing’s scale. A 1:1
scale creates a drawing that is actual size. Every foot or meter of the object
being drawn equals that dimension on the paper. Drawing a house using a
1:1 scale would require a piece of paper as large as the house. To avoid this,



the scale can be changed. A 1:2 scale means every unit on the drawing
equals 2 units in the real world; therefore, the drawing is half scale. The size
of the paper and the subject being drawn determine the scale to use.

The measuring line is typically placed on the picture plane at the ground
level. In this position, the measuring line not only determines the scale, it
also determines the height of the viewer. Since the horizon line is at the
viewer’s eye level and the measuring line is on the ground, the distance
between the horizon line and measuring line equals the distance between the
viewer’s eyes and the ground plane (Figure 1.7).

Figure 1.7 The viewer’s eye level equals the distance from the measuring line to
the horizon line. The placement of the measuring line determines the height of the
viewer.
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Figure 1.8 Plan and elevation views show only two dimensions.

Plan View

A plan view is an orthographic drawing from above. A plan view has no
perspective; it shows only two dimensions: width and depth (Figure 1.8).

Elevation View

An elevation view is an orthographic drawing from the front, back, or side.
An elevation view has no perspective. Like plan view, only two dimensions
are shown: height and width (front or back elevation view), or height and
depth (side elevation view) (Figure 1.8).

Station Point and Picture Plane Dynamics

When a viewer sees an image, the shape perceived is determined by the
relationship between three elements: the station point, the picture plane, and
the object. When the relationship between these three elements changes, the
object seen also changes. To gain a better understanding of this
phenomenon, each of these elements will be examined more closely.

Station Point



The station point can be close to the picture plane, or far away. The farther
away the viewer is from the picture plane, the more foreshortened depth
appears. When the viewer moves closer to the picture plane, the
foreshortening is less severe. Width, however, is not affected (Eigure 1.9).

Picture Plane

The picture plane can be positioned anywhere between the station point and
the horizon line. The closer the picture plane is to the viewer, the smaller the
object appears. The farther the picture plane is from the viewer, the larger
the image appears. The perspective does not change. The images are
identical in shape, but are different sizes (Figure 1.10).

The viewer is 3 units from The viewer is 2 units from The viewer is 1 unit from
the picture plane. the picture plane. the picture plane.
What the viewer sees What the viewer sees What the viewer sees

Figure 1.9 Moving the viewer changes the object’s shape but not the object’s size.
It remains the same width.

The picture plane is 3 units The picture plane is 2 units The picture plane is 1 unit
from the viewer. from the viewer. from the viewer.
ot N A, —

What the viewer sees What the viewer sees What the viewer sees

Figure 1.10 Moving the picture plane changes the object’s size but not the shape.



Object

When the image is closer to the picture plane it is larger and less
foreshortened. As the image moves farther from the picture plane it
becomes smaller and more foreshortened. The object’s size and shape are
affected (Figure 1.11).

B

The square is touching The square is 1 unit behind The square is 2 units behind
the picture plane. the picture plane. the picture plane.
PEEETN Wi N PR
What the viewer sees What the viewer sees What the viewer sees

Figure 1.11 Moving the object changes the size and shape.

While it may seem as though there are many variables to be remembered
when drawing in perspective, in reality these effects happen automatically
when using perspective techniques.



2
One- through Six-Point Perspective, an
Overview

In the world of perspective, there are six ways a viewer can be oriented to
the mise-en-scéne. Each orientation results in a different diagram, and each
diagram depends on the relationship of the viewer to the picture plane and
to the object being drawn. The relationship of these three items (as well as
the shape of the picture plane) determines the diagram used. Perspective
diagrams can be from one-point all the way up to six-point perspective.
Detailed instructions are given for these orientations in subsequent chapters,
but first, a brief overview of them follows before examining their finer
aspects.

One-Point Perspective

Elevation view

HL

Plan view



Figure 2.1 In one-point perspective vertical and horizontal lines are parallel with
the picture plane. Objects outside of the cone of vision are distorted. A cube will
look more like a rectangle.

In 1435, Leon Battista Alberti published On Painting, the first book to
diagram perspective— specifically, one-point perspective. In one-point
perspective, vertical and horizontal dimensions are parallel with the picture
plane. Vertical lines are drawn perpendicular to the horizon line, and
horizontal lines are drawn parallel with the horizon line. Depth is
foreshortened. These foreshortened lines are oriented 90° to the picture plane
and connect to the center of vision (Figure 2.1).

Two-Point Perspective

Objects drawn in two-point perspective appear early in the sixteenth century
(Figure 2.2). In two-point perspective, horizontal lines are angled to the
picture plane, and thus foreshortened. They connect to a left vanishing point
(LVP) or right vanishing point (RVP). Only vertical dimensions are parallel
with the picture plane and are drawn as true vertical lines (Figure 2.3).



Figure 2.2 Albrecht Diirer, St. Jerome in His Study (engraving), 1514, London,
British Museum. The chair to the right of St. Jerome is an early example of two-
point perspective.



Elevation view

LvP

Plan view

Figure 2.3 In two-point perspective, vertical dimensions are parallel with the
picture plane and horizontal dimensions are angled to the picture plane. Objects
outside the cone of vision are distorted; cubes look rhomboid, their corners not
appearing to be right angles.

Three-Point Perspective
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Figure 2.4 Carlo Urbino, Detail from the Codex Huygens, Morgan Library &
Museum, NY.

A rudimentary understanding of three-point perspective appears in
examples from the Codex Huygens, a sixteenth-century Renaissance
manuscript once thought to be the work of Leonardo da Vinci. This
manuscript demonstrates the foreshortening effect of looking up: a worm’s-
eye view (Figure 2.4). In three-point perspective, no lines are parallel with
the picture plane. The picture plane is angled to the ground, because the
viewer is looking up or down at the image. The center of vision is above or
below the horizon line. There is a left, right, and vertical vanishing point
(VVP), and all lines are foreshortened (Figure 2.5).



Cone of Vision

HL

Looking up Looking up

Cone of vr's:'on

HL

PP

D

o

Looking down

Looking down

Figure 2.5 In three-point perspective no lines are parallel with the picture plane.
Objects outside the cone of vision are distorted. They look stretched and tilted.

Four-Point Perspective

Before artists understood the cone of vision, many unwittingly attempted
wide-angled views— with unfortunate results. They had no way to
compensate for the effects of distortion caused by a flat picture plane.



Four-point perspective is a panorama view. It displays information
normally unseen. There are four vanishing points, and each are 90° apart.
Horizontally, the picture plane is curved and surrounds the viewer like a
cylinder. This creates a 360° image area. Vertically, the picture plane is flat.
Therefore, to prevent distortion, the vertical image area remains at 60°.
Vertical lines are parallel with the picture plane and are drawn straight.
Horizontal lines are not parallel with the picture plane, and are drawn
curved (Figure 2.6).

A variation on the panorama theme is to turn the picture plane 90° (a
vertical cylinder). This orientation creates a four-point view from zenith to
nadir.
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Figure 2.6 In four-point perspective vertical lines are straight and horizontal lines
are curved.

Five-Point Perspective

Curvilinear perspective, sometimes called “fish-eye,” can be traced to the
infancy of perspective. Jan van Eyck’s painting, The Arnolfini Portrait,
depicts a reflection on a curved mirror (Figure 2.7). The science surrounding



curvilinear perspective was not fully understood, but artists had many
opportunities to study the appearance of lines reflected on curved surfaces.
Polished stones used as mirrors have been found dating back to 6000 BC.

Early curvilinear perspective was confined to reflected images. However,
curvilinear perspective can be applied to real objects. In five-point
perspective, the picture plane is a hemisphere. Five-point perspective
creates a 180° image. Everything is depicted from east to west and from
north to south. There is a vanishing point at the top of the hemisphere and
one at the bottom, one to the left and one to the right. The fifth vanishing
point is at the center of vision (Figure 2.8).




Figure 2.7 Jan van Eyck, The Arnolfini Portrait (detail), 1434, National Portrait
Gallery, London.

Figure 2.8 In five-point perspective, the picture plane is a hemisphere.

Six-Point Perspective

A six-point image displays everything in front of the viewer, as well as
everything behind them—a 360° image. The picture plane is a sphere. The
two images are typically displayed side-by-side (Eigure 2.9).
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Figure 2.9 In six-point perspective, the picture plane is a sphere with the station
point at its center.



3
One-Point Perspective

Before a perspective drawing can be created, a perspective diagram needs to
be constructed. The diagram is the foundation for the image, the basal
element of perspective. It establishes the infrastructure and key elements
necessary for accurate representation.

Creating a One-Point Perspective Diagram

Here is a list of the principal components of the diagram, and how to
arrange them.

Horizon Line (HL)

Begin by drawing a horizontal line. This line represents the horizon. It can be
drawn anywhere, although it is usually best to place it somewhere in the
center of the page. The horizon line is always at the viewer’s eye level.

Station Point (SP)
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Figure 3.1 Establishing the distance from the viewer to the picture plane.

The placement of the station point defines the distance from the viewer to
the picture plane. The station point’s location is in the third dimension—
however, the paper has only two dimensions. This creates an obvious
problem. This obstacle is circumvented by drawing the distance from the
viewer to the picture plane vertically. The distance from the center of vision
to the station point represents the distance from the viewer to the picture
plane. Decide how far the viewer is from the picture plane (the greater the
distance, the larger the cone of vision). Then, from the center of vision, draw
a line down to the station point (the station point and the center of vision are
always aligned). There is no foreshortening to this line (Figure 3.1).

For example, if the distance is 10 units long and the scale is 1:2, then the
viewer is 20 units from the picture plane. It is usually a good idea to put the
station point as far away as comfortable. The farther away it is, the larger
the cone of vision will be, therefore allowing for a larger drawing area.

Cone of Vision

From the station point, project a 30° angle on each of the lines of sight. Then,
centered on the focal point, draw a circle (Eigure 3.2, bottom). Before
beginning the drawing, it is prudent to establish the cone of vision. It’s
helpful to know the size of the image area at the outset.
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Figure 3.2 The cone of vision is a circle created from a 60° cone projected from the
station point.

Measuring Points (MP)

From the station point, project two 45° angles to the horizon line (Figure 3.3).
These are the measuring points. Lines drawn from either of these points
create 45° angles in perspective. These points are used to measure
foreshortened lines—lines drawn to the center of vision.
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Figure 3.3 One-point measuring points are 45° from the station point.
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Figure 3.4 The measuring line defines the scale. The distance from the horizon line
to the measuring line defines the height of the viewer (5 units tall in this
illustration). The distance from the center of vision to the station point is how far
the viewer is from the picture plane (8 units in this illustration).

Place the measuring line below the horizon. The measuring line is on the
ground plane. The horizon line is at the viewer’s eye level, therefore the
distance from the measuring line to the horizon line equals the distance from
the ground to the viewer’s eye. The lower the measuring line is drawn, the
taller the viewer.

Divide the measuring line into units (Figure 3.4). Throughout this book,
distances are referred to as units. A unit can represent any distance—one inch
or one centimeter, ten miles or 10,000 meters.

The one-point perspective diagram is now complete, and the drawing can be
started.

Measuring in One-Point Perspective

In one-point perspective objects are oriented to the picture plane in a specific
way. Height and width are parallel with the picture plane, and depth is
perpendicular to the picture plane. Each of these dimensions will be
examined in turn.

Measuring Width

The line of sight is the direction in which the viewer is looking. Objects can
be to the left or to the right of the line of sight. Measure this distance by
counting units along the measuring line (Figure 3.5).
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Figure 3.5 Measure width by counting units to the left or right of the line of sight.

Measuring Depth

Lines that are 90° to the picture plane connect to the center of vision (Figure
3.6). These lines are foreshortened, and can’t be measured directly with a
ruler. The process of measuring foreshortened lines involves some simple
geometry—no equations are required. The angle between opposing corners
of a square is 45°. By drawing a 45° angle, a square can be drawn. The
measuring point draws 45° angles in perspective. The measuring point
transfers a horizontal distance to a foreshortened line. When measuring in
one-point perspective, half a square is drawn—a right-angle isosceles triangle
(Eigure 3.7). See Chapter 6 for supplemental information on measuring.
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Figure 3.6 Lines that are 90° to the picture plane connect to the center of vision.
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Figure 3.7 Use a measuring point to measure lines connecting to the center of
vision. The measuring point draws a foreshortened isosceles triangle.

Measuring Height

To measure vertically, turn the measuring line 90°. Using the same scale,
measure up from the ground to the desired height (Figure 3.8). The height
can be projected forward or backward using the center of vision.



Figure 3.8 Measure height by turning the measuring line vertically. Height can be
projected forward or backward using the center of vision.

Drawing a One-Point Perspective Box

Now height, width, and depth can be measured, these three skills can be
combined to draw a box—a one-point perspective, right-angled cuboid.

Create the Diagram

First, draw the diagram. The dimensions used are random, and can, of
course, be any desired number. Make the viewer 4.5 units from the picture
plane, with an eye-level 3 units above ground (Eigure 3.9).
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Figure 3.9 Defining the viewer’s height and distance from the picture plane.

Place the Box

The box is 1 unit to the left of the center of vision and 2 units behind the
picture plane (Figure 3.10).

Measure the Box



The box is 2 units wide, 3 units deep, and 2 units high. Measure each
dimension one line at a time (Figures 3.11-3.14).
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Figure 3.10 The elevation view shows the box 1 unit to the left of the center of
vision. The plan view shows the box 2 units behind the picture plane.
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Figure 3.11 (BELOW) The dot represents the front right corner of the box. It is 1
unit to the left of the center of vision, and 2 units behind the picture plane.



MP cv HL MP

AL

2 units wide

SP

Figure 3.12 Measure the width of the box along the measuring line, and project the
dimension backward using the center of vision.
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Figure 3.13 Use the measuring point to determine depth.
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Figure 3.14 Measure up from the measuring line, then project the height back to
the desired location using the center of vision.

Complete the Box

Once the height, width, and depth have been measured, find the
intersections of these lines to create the corners of the box. Vertical lines are
perpendicular to the horizon line. Horizontal lines are parallel with the
horizon line. Lines that recede in space connect to the center of vision
(Figure 3.15).
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Figure 3.15 The completed box.




Continue to practice. Try varying the dimensions, or changing the viewer’s
eye level and distance to the picture plane. Draw several objects on one
page. Become comfortable with one-point perspective before progressing to
two-point.

Measuring in Front of the Picture Plane

The previous box was behind the picture plane (between the picture plane
and the horizon line). Depth was measured by projecting backward from the
measuring line (toward the measuring point) (Figure 3.16).

HL

Figure 3.16 Measuring 2 units behind the picture plane.

If an object is in front of the picture plane (between the picture plane and
the viewer), measure depth by projecting forward (away from the
measuring point) (Eigure 3.17).
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Figure 3.17 Measuring 2 units in front of the picture plane.

If an object is straddling the picture plane, depth is measured by
projecting backward and forward from the measuring point (Eigure 3.18).

MP VP HL

Figure 3.18 Measuring a line that straddles the picture plane. This line is 4 units
long (1 unit in front of the picture plane, and 3 units behind the picture plane).

This dynamic will be explored further with an example. Draw a room
with the measuring line placed between the back wall and the viewer (the
picture plane bisects the room) (Figure 3.19). Measurements behind the
picture plane are projected backward, toward the measuring point (Figure
3.20). Measurements in front of the picture plane are projected forward,
away from the measuring point. The room surrounds the viewer, so the
complete room cannot be drawn. The front of the room is beyond the cone



of vision, as well as beyond the edge of the page (Figure 3.21). Placing a grid
on the floor may help to visualize the space. Each square represents a half
unit, which leads to the next topic: grids (Figure 3.22).

Figure 3.19 The viewer is 4 units in front of the picture plane. The back of the room
is 4 units behind the picture plane.



ML (PP)

SP

Figure 3.20 Measuring 4 units behind the picture plane.

PP

MP

ML

N\

The intersection of these
two lines define the
front of the room

(4 units in front of the

picture plane). \ R
.




Figure 3.21 The beginning of the room is 4 units in front of the picture plane. The
viewer is also 4 units in front of the picture plane. This creates a distance far
beyond the cone of vision, and far beyond what is practical to plot.
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Figure 3.22 Placing a grid on the floor helps to visualize the space.
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1. Draw evenly spaced lines to the VP.
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Figure 3.23 Follow these steps to create a one-point perspective grid.




Drawing a One-Point Grid

Drawing a grid is a straightforward task. However, take care to not be
overly dependent on grids. If perspective—and the geometry—is understood,
then the grid is superfluous. Drawing without a grid is faster and more
versatile, but it does have a steeper learning curve. A grid takes time to
draw, and is awkward for depicting objects that do not conform to its
pattern. However, grids—once they are established—conveniently guide the
direction of lines and assist in establishing dimensions. Learning the grid
system can be a good starting point for those new to perspective, and there
are some instances where establishing a grid is the best solution to a
problem.

Drawing a grid involves creating a series of squares. The size of each
square, and the number of squares created, are determined by the image.
More detailed drawings suggest a smaller, tighter grid. Because of the
superabundance of lines, grids are usually used as an underlay. Each square
represents 1 unit of measurement (Figure 3.23). A horizontal grid is used to
measure width and depth, and a vertical grid is used to measure height
(Figure 3.24).
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Figure 3.24 Using a grid to measure.




4
Reference Points

Reference points (RP) look like vanishing points, but they differ in function.
Vanishing points are used to draw objects; reference points are used to move
objects. While vanishing points are specific in their location, any dot can be
used as a reference point. When drawing multiples of an object (a crowd of
people, for example), reference points are convenient tools. There are,
however, two important caveats: the lines being moved must be on the same
horizontal plane, and they must be parallel with each other. A point on the
horizon line creates lines parallel with the ground plane. Therefore, a
reference point can’t be used to move a line that is on the ground to a
position above the ground.

Reference points are not needed to move lines up, down, or from side to
side. Lines moving in any of these directions do not change size (Eigures 4.1-
4.3, top). Reference points are only used to move lines forward or backward
in space (Eigures 4.1-4.3, bottom).



When lines move vertically or horizontally reference points
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Figure 4.1 Reference points are not needed when moving lines from side to side or
up and down (top). Use reference points to move lines forward or backward in
space. The lines being moved must be parallel with each other and on the same
horizontal plane (bottom).



When lines move vertically or horizontally they stay the same size.
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Figure 4.2 Use reference points to move vertical lines. The lines being moved must
be parallel with each other and on the same horizontal plane.



When moving lines vertically or horizontally the lines
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Figure 4.3 Use reference points to move foreshortened lines. The lines moved must
remain parallel with each other (connect to the same vanishing point), and be on
the same horizontal plane.



2
Two-Point Perspective

When an object is viewed at an angle, when only the vertical dimension is
parallel with the picture plane, and when both width and depth are
foreshortened, the object is in two-point perspective. Predictably, two-point
perspective has two vanishing points: a left vanishing point (LVP) and a right
vanishing point (RVP). The location of the vanishing point depends on the
angle of the object being drawn.

Two-Point Perspective Diagram

Vanishing Points

Most objects have 90° corners. To create 90° corners in perspective, the left
and right vanishing points must be 90° apart (subsequent chapters will
discuss how to create other angles).

Using a triangle, place a true 90° angle at the station point, then project
that angle to the horizon line. The resulting points (the right and left
vanishing points) will draw 90° angles in perspective. Any 90° angle
projected from the station point creates two vanishing points that draw that
same angle in perspective (Figure 5.1).

Understanding perspective is to understand angles. The station point is a
powerful tool. Angles placed at the station point mirror the perspective
angles in the drawing. To draw an object at a specific angle to the picture
plane, draw that angle from the station point to the horizon line; the
vanishing points created will draw those same angles in perspective (Figure



5.2). Multiple objects at various angles can be created using this technique, as
discussed further in Chapter 7 (Figure 7.2).

Measuring Points

Each vanishing point has a dedicated measuring point. The left vanishing
point has a left measuring point (LMP) and the right vanishing point has a
right measuring point (RMP). The left measuring point measures lines
connecting to the left vanishing point. The right measuring point measures
lines connecting to the right vanishing point.

The placement of measuring points is specific. The distance from the
measuring point to the vanishing point is the same as the distance from the
station point to the vanishing point. There are two ways to find the correct
placement of the measuring point, using a compass or a ruler. When using a
compass, put the stationary arm of the compass on the vanishing point and
draw an arch from the station point to the horizon line. The same result can
be achieved using a ruler (Figure 5.3).
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Figure 5.1 True angles are found at the station point. A true 90° angle drawn from
the station point creates left and right vanishing points that draw 90° angles in
perspective. There can be as many pairs of vanishing points as there are objects.
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Figure 5.2 Use the station point to draw objects at specific angles. The left example
shows the object turned 45° to the picture plane. The right example shows the
object turned 30°/60° to the picture plane. Any angle can be created by projecting it
from the station point to the horizon line.
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Figure 5.3 Plot the location of the left and right measuring points using a compass
or aruler.

Measuring Depth

Measuring in two-point perspective follows the same procedures as one-
point. It is, however, a little more complicated, as there are now two
measuring points. The more points there are on the horizon line, the harder
it is to keep track of them. Color-coding the perspective layout keeps
mistakes to a minimum. For example, label lines from the right vanishing
point and right measuring point in one color, and label lines from the left
vanishing point and left measuring point in another.

Use the left measuring point to measure lines connecting to the left
vanishing point (Eigure 5.4). Use the right measuring point to measure lines
connecting to the right vanishing point (Figure 5.5).
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Figure 5.4 Use the left measuring point to measure lines that connect to the left
vanishing point.
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Figure 5.5 Use the right measuring point to measure lines that connect to the right
vanishing point.

Completing the Shape



After measuring the left and right side, complete the shape by connecting
the corners to vanishing points. Take care to connect the lines to vanishing
points. Do not connect lines to measuring points. Measuring points are only
for measuring, they are not part of the physical object. Lines connecting to
measuring points are phantom lines; they are invisible. This mistake can
usually be spotted quickly, as the shape’s corners will not look square (Figure
5.6).
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Figure 5.6 The back of the box connects to vanishing points. A common mistake is
to use a measuring point where a vanishing point should be used.

Measuring Height

Measuring vertical dimensions in two-point perspective is no different than
one-point perspective. Vertical lines touching the picture plane are actual
size. Project the height to the desired location using a vanishing point or a
reference point (Figure 5.7).
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Figure 5.7 Measure vertical dimensions at the picture plane.

More Two-Point Measuring

In the previous example, the front of the box was touching the picture plane.
This creates a convenient situation for measuring. The zero point was where
the box contacts the measuring line. To measure depth, it was a case of
simply counting to the left and right of zero. But what if the box does not
touch the measuring line? How is this measured, and where is the zero
point? Where does the counting begin? Before discussing the solutions, draw
a sample square that does not touch the picture plane.

Location

Place the square 1 unit to the right of the center of vision and 3 units behind
the picture plane. Use one-point perspective to find this location (Figure 5.8).
Refer to Chapter 3, Figures 3.9-3.10 for additional information about
measuring in one-point perspective.
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Figure 5.8 The front corner of the box (represented by the dot) is 1 unit to the right
of the center of vision and 3 units behind the measuring line.

Measuring Behind the Picture Plane

There are two ways to measure shapes not touching the measuring line: 1)
project the object to the measuring line, or 2) move the measuring line to the
object.

Method 1: Project the Object to the Measuring Line

To measure an object, a point is needed to begin measurements—a zero
point. To find the zero point, project the line being measured to the
measuring line. How it is projected is critical; there is specific geometry to
adhere to. The appropriate measuring point must be used to find the length
of a foreshortened line. To find the zero point for lines drawn to the right or
left vanishing point, use the right or left measuring point respectively. Use
the right measuring point to measure lines connecting to the right vanishing



point (Figure 5.9), and use the left measuring point to measure lines
connecting to the left vanishing point (Figure 5.10).
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Figure 5.9 The right measuring point is used to measure lines connecting to the
right vanishing point.
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Figure 5.10 Measure the left side by finding a new zero point. Measure the desired
distance and project back to the left measuring point.

Project the beginning of the line to the picture plane. This is the zero point.
Count the desired distance along the measuring line, and then project back
to the same measuring point.

Connect the lines to vanishing points to complete the square (Eigure 5.11).
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Figure 5.11 Connect to vanishing points to complete the square.



Method 2: Move the Measuring Line to the Object

An alternative method is to move the measuring line. Position it so that it
touches the object being measured. The measuring line must be moved in
perspective, using a reference point (Figure 5.12). Once the new measuring
line is in place, follow the procedures outlined in Figures 5.4-5.6.
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Figure 5.12 Use a reference point to move the measuring line.

Distant Objects

If the object being measured is located a great distance from the picture
plane, using Method 1 can be inconvenient. In these situations, Method 1
would require a very long ruler. The second method, moving the measuring
line back and creating smaller units closer to the object being measured, is
the preferred method (Figures 5.13-5.15).
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Figure 5.13 With the measuring line relocated, measure the respective lines using
the proper measuring points.
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Figure 5.14 Connect lines to vanishing points to create the back of the square.
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Figure 5.15 Moving the measuring line (Method 2) keeps measurements from
exceeding the bounds of the paper (as compared to Method 1).

Measuring in Front of the Picture Plane

Measuring lines in front of the picture plane follows the same basic
procedures as measuring lines behind the picture plane. The difference is that
lines are projected forward from the measuring line instead of backward
(Figure 5.16).
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Figure 5.16 Measuring in front of the picture plane.

If the line being measured does not touch the picture plane, use the
measuring point to project the measurements forward (Eigure 5.17).
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Figure 5.17 Use the measuring point to project the line being measured to the
measuring line.

If a line straddles the picture plane it requires a combination of projecting
measurements backward and forward (Figure 5.18).
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Figure 5.18 This line is 3 units in front and 2 units behind the picture plane.

Drawing A Two-Point Box

Now that the basics of two-point perspective have been covered, it is time to
apply this information to a drawing. This example is a box, 2 units tall, 3
units wide, and 3 units deep. It is 1 unit to the left of the center of vision and
3 units behind the picture plane (Figure 5.19 shows how the finished layout
will look). To approach this problem, do one step at a time.



LvP RMP LMP RVP

~—— 2 units

3 units

Plan view Elevation view

3
[ L
1T 0M
|

L(PP)

Figure 5.19 The completed box with construction lines intact.

Location

First, using one-point perspective, measure 1 unit to the left of the center of
vision, then 3 units behind the picture plane (Figure 5.20).
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Figure 5.20 The location of the box’s front corner is 1 unit to the left and 3 units
behind the measuring line.



Left Side

First find the zero point. Using the left measuring point, project the front
corner of the box (represented by the dot) to the measuring line (Eigure
5.21). Measure 3 units to the left, and then project back to the left measuring
point (Figure 5.22).
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Figure 5.21 Finding the zero point.
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Figure 5.22 Measuring the left side of the box.

Right Side

Use the same procedure to measure the right side. But first, find a new zero
using the right measuring point (Figure 5.23).
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Figure 5.23 Measuring the right side of the box.

Height

Height is not foreshortened. A reference point can be used to establish the
height. A reference point can be any dot on the horizon line (Eigure 5.24 uses
the right measuring point).
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Figure 5.24 Using the right measuring point as a reference point to measure height.

Completing the Box

To complete the box, connect the horizontal lines to the vanishing points,
and draw the vertical lines parallel with the picture plane (Figure 5.25).
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Figure 5.25 Connect lines to vanishing points to complete the box.

Two-Point Perspective Grid

As with one-point, a two-point perspective grid, once established, is an easy
way to measure shapes and determine the proper direction of lines. But once
confidence with perspective techniques has been achieved, grids become
unnecessary. They take undue time to create and they make drawing objects
at angles other than the grid angles awkward. Despite its drawbacks, the
grid’s simplicity is enticing, and there are situations where establishing a grid
can be the best solution to a problem.



Diagram

To draw a grid, first construct the diagram (establish the HL, SP, VPs, MPs,
and ML). Decide on the placement of the grid (the front corner is typically
placed on the measuring line, aligned with the center of vision). Draw lines
to the left and right vanishing points. Then, using the appropriate measuring
point, divide these lines into equal increments. The number of increments
made depends on the desired size of the grid (Eigure 5.26).

LvP RMP LMP HL RVP
- a

Figure 5.26 Measure evenly spaced segments along the lines connecting to the
vanish points.

Horizontal Grid

After measuring the grid segments, connect these measurements to
vanishing points (Eigure 5.27).
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Figure 5.27 Connect the measurements to vanishing points to create a grid.
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Figure 5.28 Create a vertical grid by transferring dimensions from the picture
plane. The right measuring point is functioning as a reference point.
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Figure 5.29 Connect vertical segments to the vanishing point.

Vertical Grid

Use a reference point to project the vertical dimensions from the picture
plane (Figure 5.28). Project each segment to the vanishing point (Figure 5.29).
Extend the horizontal grid lines vertically to finalize the grid (Eigure 5.30).
Create a grid on the left wall if needed.
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Figure 5.30 Project vertical lines from the horizontal grid to complete the squares.

Completing the Grid

Once the grid is complete, it is typically used as an underlay to guide

drawing. Each square represents 1 unit. Using this as a guide, a shape of any

size can be made by counting squares and conforming the lines to the grid.
Use the horizontal grid to determine the width, depth, and placement of

the shape being drawn. Use the vertical grid to determine height (Figure
5.31).
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Figure 5.31 Use the grid to measure objects. This cube is 1 unit from the front left
wall, 2 units from the front right wall, and 1 unit above the ground.



6
Measuring Point Geometry

Being well-versed in geometry is not required in order to draw in
perspective. But understanding why these methods are used helps remove
the mystery and confusion that surrounds the process. To understand why
measuring points work, isosceles triangles need to be understood. Isosceles
triangles have two sides (legs) that are equal in length. When creating a
measuring point, an isosceles triangle is also created (Figure 6.1).

Connecting the vanishing point, station point, and measuring point forms
a true isosceles triangle (Figure 6.1, right).

LEP LMP RVP

LengthA—————————>|

Isosceles triangle

SP

Figure 6.1 The distance from the left vanishing point to the left measuring point is
the same as the distance from the left vanishing point to the station point, an
isosceles triangle.

Lines drawn from the measuring point draw foreshortened isosceles
triangles. The measuring line is always parallel with the picture plane; it is
never foreshortened. When measuring, the length is transferred from the
measuring line to a foreshortened line. The measuring line and the



foreshortened line are the legs of the isosceles triangle. For the two legs of
the triangle to be the same length, the angle created by the measuring point
must be specific (Figure 6.2). It is therefore critical to use the proper
measuring point. Otherwise, the shape drawn would not be an isosceles
triangle; the two legs would not be the same, and the measurements would
be inaccurate.

LvP LMP

The shaded triangle is an isosceles triangle in perspective.

The larger triangle (connecting the SP, LVP, and LMP) is a true
isosceles triangle.
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Lines that connect to the same point are parallel. Thus, the
perspective triangle and the true triangle have congruent angles.
They are therefore both isosceles triangles. The length of the
measuring line equals the length of the foreshortened line.

LvP LMP RVP

Parallel

SP

Figure 6.2 When using a measuring point, a foreshortened isosceles triangle is
created.
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Horizontal Angles

There is a one-to-one relationship between true angles at the station point
and perspective angles from vanishing points. The station point serves as the
axis (center point) for angles. Around the station point are angles totaling
360° (Figure 7.1). It is worth reviewing Chapter 5 as this content builds on
that foundation.
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Axis point for perspective angles. %’,
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P The SP is the axis
90° | 90° point for true angles.

True angles



Figure 7.1 True 360° angles shown at the station point, and 360° angles shown in
perspective to the upper left.

True angles at the station point mirror the perspective angles drawn from
the vanishing points. An angle drawn from the station point, projected to the
horizon line, creates a vanishing point that will draw that same angle in
perspective. For example, to create a line 30° to the right of the center of
vision, draw a true 30° angle at the station point. Project that angle to the
horizon line. The resulting vanishing point will draw 30° angles in
perspective (Figure 7.2). Keep in mind that there are 360° to consider. Here is
another example: to create a line 130° to the right of the center of vision,
draw that angle at the station point and project it to the horizon line. The
resulting vanishing point draws that angle in perspective (Figure 7.3).
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Figure 7.2 True angles projected from the station point create vanishing points that
draw that same angle in perspective.
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Figure 7.3 Angles can radiate from any direction around the station point, as there
are 360°.

An Example of Horizontal Angles



Plan view

N

Figure 7.4 It is possible to open a door in or out, which makes it a convenient
example to explore angles other than 90°.

Most objects have right angles. But there are instances where angles other
than 90° are called for. For an example, try applying this understanding of
angles to an illustration. A door makes an excellent demonstration, as doors
can swing out and swing in. There are a full 360° of possibilities (Figure 7.4).
Of course, these general concepts apply to any situation that involves angles
other than 90°.

The Wall’s Angle

Place the door on the right, opening out 60° from the wall. The first step is to
determine the angle of the wall. The wall is in perspective, so, to find the
true angle of the wall, look to the station point. Angles at the station point
are true angles. The line connecting the station point to the right vanishing
point indicates the true angle of the right wall (Eigure 7.5).



LVP

RVP

Figure 7.5 True angles of any foreshortened line can be found at the station point.

The Door’s Angle

LVP

RVP




Figure 7.6 Angles at the station point reflect the true angles of perspective lines.

The station point is the axis point for true angles. The door’s hinge is the axis
point for perspective angles. Since the door’s threshold projects forward, in
front of the hinge, create that same angle at the station point (Figure 7.6).

LvP r/f\l RVP

True angle
of the door

Figure 7.7 Draw the true angle of the door at the station point. The angles at the
station point are the same as those in a plan view.



LVP Door VP | RVP

SP

60°

Figure 7.8 Project the true angle of the door to the horizon line, creating a
vanishing point that draws that same angle in perspective.
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60°

Figure 7.9 Lines drawn from the door vanishing point are 60° from lines drawn to
the right vanishing point.

This door opens outward 60°, so draw that angle at the station point
(Figure 7.7). Project the 60° angle to the horizon line (Figure 7.8). This
vanishing point draws angles that are 60° from lines drawn to the right
vanishing point (Figure 7.9).

The Threshold’s Length

The door must close properly, so it must be the same length as the threshold.
The next step is to measure the door. This is done with the right measuring
point (Figure 7.10).



Figure 7.10 Use the right measuring point to measure the door’s threshold.

The Door’s Length

Door Door
LVP RMP VP MP RVP

Figure 7.11 Create a door measuring point.



After determining the length of the threshold, measure the door. Since every
vanishing point has its own measuring point, a new measuring point for the
door needs to be created (Figure 7.11). Measure the door using the door
measuring point (Figure 7.12). Complete the door by connecting lines to
vanishing points (Figure 7.13).
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Figure 7.13 Completed door. To draw the thickness, project a 90° angle at the
station point.



8
Ellipses, Spheres, Spiral Forms, and Random
Curves

Ellipses

Pointy ellipses

Flat ellipses
Figure 8.1 Two of the most common mistakes when drawing ellipses.

Ellipses are circles in perspective. Two common mistakes are drawing pointy
ellipses and flat ellipses (Figure 8.1). A sure way to correct ellipses is to plot
them in perspective. There are many ways to plot an ellipse. Each involves
finding points along the circle and connecting the dots. This method is
standard for drawing any curved object. The more points that are plotted,
the more accurate the curve. The techniques used to plot ellipses are not
especially complicated, but drawing smooth, beautiful ellipses involves more
than knowing how to plot them. It involves a level of skill and finesse; it
requires practice.

There are many methods to plot an ellipse, more than discussed in this
book, but they all accomplish the same task—they all draw circles in



perspective. The following pages illustrate some of the best methods,
beginning with a four-point ellipse.

Four-Point Ellipse

Typically, four points do not give enough information to draw an accurate
ellipse. But, when used for small ellipses, they are usually adequate, as well
as simple and fast. Start by drawing a square. A circle touches a square at the
center of each side—at four points. Locate these four points by finding the
center of the square (draw an X through the corners), then project outward
from the center point. Connect the four points with a smooth curve (Figure
8.2). Four points are adequate for small ellipses. For larger ellipses, it is
desirable to have more points. The more points there are, the more accurate
the ellipse.

Figure 8.2 Drawing a four-point ellipse.

Ellipses are especially susceptible to distortion. As ellipses stray from the
center of vision they tend to look tilted (Figure 8.3, left). This is an
unavoidable byproduct of perspective—objects drawn beyond the cone of
vision will look stretched. Ellipses seem to magnify this problem. These
distorted ellipses can be seen in many historical paintings. It is a frustrating
predicament. The ellipses are plotted correctly, but look askew. This dilemma
can be fixed by “cheating” the ellipses: their shape is modified so they
appear visually correct. This requires a bit of artistic surgery and eyeballing.
Modify the shape so the left side of the ellipse appears symmetrical with the




right side (Eigure 8.3, right). If the left and right side of an ellipse are
symmetrical, the ellipse will look flat. Sometimes it is best to use a little
artistic license, correcting the ellipse to compensate for distortion.

Compensating for distortion

“Corrected” ellipse Distorted ellipse

Figure 8.3 Ellipses look increasingly distorted as they approach the cone of vision’s
border.

Eight-Point Plotted Ellipse

The eight-point ellipse is most commonly used. Having eight points, each
being 45° apart, gives an accurate guide to draw most ellipses. There are
many ways to draw an eight-point ellipse. One of the oldest methods used to
find these additional four points begins by drawing a true circle. The four
points are then transferred from the true circle to the perspective ellipse
(Eigure 8.4).

Shortcut

This method works well but can be long-winded as there are quite a few
unnecessary lines. Instead of drawing the entire true circle, draw a quarter
circle. Once one point is plotted, that point can be transferred to the other
three locations (Figure 8.5).
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Figure 8.4 How to draw an eight-point ellipse in perspective.
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Figure 8.5 This is a shortcut to drawing an eight-point ellipse, saving time and
space.




Eight-Point Measured Ellipse

This is the most streamlined— and arguably the simplest— method to plot an
ellipse. Here’s how it works. Four points of the ellipse touch the square. The
other four points are located on the diagonal lines. The diagonal lines have a
vanishing point; they are foreshortened. The horizontal line representing the
radius of the ellipse is parallel with the picture plane, so it is not
foreshortened. Use this horizontal line as a measuring line. Using the
appropriate measuring point, transfer the length of the un-foreshortened
radius to the diagonal line (Figure 8.6). This method works well for
horizontal ellipses. It also works for vertical ellipses, but is a bit more
complicated. It involves using auxiliary vanishing points (AUX. VPs) and
auxiliary measuring points (AUX. MPs). This technique is best confined to
horizontal ellipses.
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Figure 8.6 Using a measuring point to create an eight-point ellipse.

Eight-Point Projected Ellipse

This method is based more on coincidence than on geometry; there is no real
logic to the procedure. Follow the steps, and an eight-point ellipse can be
drawn. It is quick and relatively simple, but this method is not 100 percent
accurate—it is extremely close, but not mathematically exact. It creates a
radius along the diagonal, slightly longer than it should be (about 2 percent
longer). This variation would be unacceptable to a mechanical engineer— but
it is insignificant for a hand-drawn ellipse (Eigure 8.7).
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Figure 8.7 This eight-point ellipse technique is simple and compact.




Twelve-Point Ellipse

The more points that are plotted, the more accurate the ellipse. There are
two methods to draw a twelve-point ellipse. In the first method, the ellipse is
not mathematically perfect as before, but the deviation is insignificant. This
method is best used for larger ellipses. Follow the steps to find the twelve
points (Figure 8.8).
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Figure 8.8 A twelve-point ellipse works well for large circles.

The points in the second version are a little closer to each other than in the
previous twelve-point diagram (Figure 8.9).



Figure 8.9 This is an alternative twelve-point ellipse method.



Twenty-Four-Point Ellipse

Combining the eight-point with one of the two twelve-point methods
creates an ellipse with twenty-four points. This is a lot of points to draw, but
if drawing a very big ellipse, a greater number of points is more desirable
(Figure 8.10).
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Figure 8.10 Twenty-four-points are used for very large ellipses.

Ellipse Guides



Ellipse guides may seem the obvious solution to drawing an ellipse. They are
convenient, fast, and create perfectly smooth ellipses, but they have one
major problem—they are not in perspective. An ellipse guide creates an oval,
not an ellipse. An oval is symmetrical vertically and horizontally; the center
is not a perspective center. A true perspective ellipse is not symmetrical; the
front half of the circle is closer to the viewer than the back half. Therefore,
the shape of the front is different from the shape of the back (Figure 8.11).
Ellipse guides work well for small ellipses. But if the ellipse is large and is to
have a feeling of depth, a perspective ellipse is needed—an ellipse that is
plotted. However, despite their drawbacks, ellipse guides can be used
successfully in a wide range of situations.

Ellipse guide ellipse Perspective ellipse

Figure 8.11 An ellipse guide ellipse compared to a perspective ellipse.

Ellipse guides come in sets ranging from 10° to 80°, in 5° increments. To
decide which degree to wuse, first draw a square in perspective. The
proportions of the square will determine which guide to use. Find the guide
that fits best. The ellipse needs to touch the center of the square’s sides. A
word of caution: the ellipse will not align properly with perspective points.
Remember, the ellipse guide is not in perspective, but the square is in
perspective. The points on the square will not match the ellipse guide, nor
will the center of the ellipse align with the perspective center of the square.
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Ellipse guide Three-dimensional view of the
minor and major axes

Figure 8.12 The major and minor axes are printed on the ellipse guide (left). A
three-dimensional view shows the minor axis oriented 90° from the ellipse’s
surface (right).

The proper orientation of an ellipse guide is critical. This is where mistakes
are often made. If the ellipse guide is not oriented correctly, the ellipse will
look tilted or angled. Using ellipse guides can be anti-intuitive; there are
rules to their use, and they often go against instincts. To understand how to
orient an ellipse guide, the major and minor axes need to be understood.
The minor axis is the short side of the ellipse, and the major axis is the long
side. The minor axis is the primary concern. It should be thought of three-
dimensionally, going through the circle. It is like an axle on a tire: it
intersects the center of the ellipse at a right angle (Figure 8.12).

Ellipse Orientation

The correct orientation of an ellipse is determined by the direction of the
minor axis. Horizontal ellipses are oriented differently than vertical ellipses,
and one-point ellipses are oriented differently than two-point ellipses.

Horizontal Ellipses



The minor axis is oriented vertically for all horizontal ellipses. It does not
matter where the ellipse is placed, or if the ellipse is drawn in one- or two-
point perspective. If the ellipse is parallel with the ground plane, then the
minor axis is oriented vertically, parallel with the picture plane and
perpendicular to the ground (Figure 8.13).
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Figure 8.13 When drawing horizontal ellipses, the minor axis is vertical,
perpendicular to the ground plane.

One-Point Vertical Ellipses

The minor axis is oriented horizontally for all one-point perspective vertical
ellipses. It does not matter where the ellipse is placed. If the ellipse is vertical
and in one-point perspective, the minor axis is oriented horizontally,
perpendicular with the picture plane and parallel with the ground (Figure
8.14).
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Figure 8.14 When drawing vertical one-point ellipses, the minor axis is horizontal,
parallel with the ground plane.

Two-Point Vertical Ellipses

The minor axis connects to a vanishing point for all two-point perspective
vertical ellipses. But there are two vanishing points—which one does the
minor axis connect to? It is helpful to think of the minor axis as an axle on a
tire. The minor axis—like an axle—goes through the ellipse. The minor axis is
a three-dimensional form. It is 90° from the surface of the ellipse (Figure

8.15).



The minor axis will always be aligned to a vanishing
point when drawing two-point vertical ellipses.

Figure 8.15 When drawing vertical two-point ellipses, the minor axis connects to a
vanishing point. Think of the ellipse as a tire, and the minor axis as an axle.



Draw the bottom of the form and the top of the form on the ground.
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Create an ellipse for the top of the cup.
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Figure 8.16 To draw tapered cylindrical forms, measure the diameter on the ground
plane, then project the ellipse to the desired height and connect the ellipses.

Tapered Forms: Cups, Bottles, and the Like



Figure 8.17 Create squares on the ground plane, raise the squares to the desired
height, draw ellipses, and then follow the contour to create a curved cylindrical
shape.

To draw cylindrical forms with various diameters, first draw squares of the
appropriate size on the ground plane. Raise each square to the desired
height. Then draw an ellipse in each square. For example, a simple tapered
cup will have a smaller diameter ellipse on the ground and a larger diameter
ellipse above. Draw both on the ground (Figure 8.16, top). Then project the
top of the cup to the desired height. Connect the two ellipses to create the
cup (Figure 8.16, bottom).

For complex forms of varying diameters, make more ellipses. The ellipses
serve as key cross-sections and guide the contour of the form— the more
ellipses, the more accurate the shape (Figure 8.17).




Spheres

Drawing a sphere in perspective is more complicated than one might think.
A compass can be used to draw a circle, and considered finished. But if a
specific size or placement for the sphere is desired, then a cube must be
drawn first. The sphere fits into the cube touching the center of all six sides.
The cube defines where the sphere touches the ground. The cube also defines
the diameter of the sphere.

Distortion

Before discussing how to fit the sphere into the cube, some issues concerning
the shape of the sphere will be explored. This may be surprising, but, in
perspective, spheres are not necessarily round. In fact, perspective spheres
are seldom round due to distortion. As an object moves away from the
center of vision, it becomes distorted. This is unavoidable. A plotted sphere
would be perfectly round at the center of vision. As the sphere moves
farther away from the focus point, the distortion increases.

A look at conic sections can further explain this phenomenon. A conic
section is the intersection of a plane and a cone. The silhouette of a sphere is
circular. When that round shape is projected to the eye, the visual pyramid is
conical. A cone intersecting a flat plane at an oblique angle creates an ellipse
(Figure 8.18). Thus, a sphere plotted in perspective is not round unless its
center is aligned with the focal point. A sphere plotted in perspective is an
ellipse.

Any circular object not aligned with the center of vision is drawn elliptical
by the rules of perspective. This elliptical shape will appear correct (circular)
if seen from the position it was plotted. If the person looking at the drawing
places their eye at the location of the station point, the ellipse will appear
circular. But, if a viewer looks at the drawing from a place other than where
the image was plotted, the perspective sphere will appear elliptical. It is
difficult to control the position from which a viewer will look at the artwork.
Ideally, spheres should look circular, not elliptical. The bottom line: use a



compass to make spheres. When drawing spheres, it is better for them to

look correct than to be correct.
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Spheres plotted in perspective

Figure 8.18 When an object is seen obliquely, distortion is inevitable.

Drawing a Cube

When using a compass to create a sphere, the sphere still needs to be

a

specific size and in a specific location. First, draw a cube and bisect it

vertically and horizontally creating six touch points (Figure 8.19).



Start with a cube.

Add vertical and horizontal
cross sections. The six dots
represent where the sphere
touches the cube.

Figure 8.19 Locating the six touch points of the sphere.

Draw an ellipse in the cross-sections (Figure 8.20, left). The edges of the
two ellipses indicate the diameter of the sphere (Figure 8.20, right). These
points are in perspective and will not align perfectly with a compass circle.
So, this is where some “cheating” is required—use artistic license and draw

the sphere with a compass.
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Figure 8.20 When drawing a perspective sphere, the horizontal and vertical cross-
sections determine the diameter of the circle.

Spiral Forms

Draw all sinuous lines by plotting points along the curve. A spiral is a
stretched circle. It moves around as it moves up. Spiral forms are based on a
series of stacked ellipses. A point is plotted along each ellipse. Closer ellipses
create a tighter spiral. First, draw an ellipse representing the diameter of the
spiral. Then decide on the spacing of each ellipse (Figure 8.21).
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Figure 8.21 This stack of ellipses looks tight, but the resulting spiral will be
surprisingly stretched. The ellipses need to be very close to achieve a tight spiral.

Each point on an eight-point ellipse represents one-eighth of a coil. A coil
is one complete turn of a spiral. It takes nine points (nine ellipses) to create a
complete coil.

Start at the bottom ellipse and pick a point to begin the spiral. Then, on
the ellipse above, move one point (one-eighth of a turn) counter-clockwise
(or clockwise depending on the rotation of the spiral). Repeat this process,
moving up one ellipse, and over one-eighth a turn. As the point moves up, it
also moves around the circle (Figure 8.22). Connect the dots, resulting in a
spiral (Figures 8.23-8.24). The method is not difficult, it is just time-
consuming. It is also dense with lines. All spiral forms (springs, barbershop
poles, candy canes, spiral staircases, etc.) are done using this basic technique.




HL

—

4, Continue moving up one :‘\"‘* Py
Q ellipse and over one po%
-’

M

3. The third ellipse moves
an additional point ""‘i:-

4)

2. One point to the right

Figure 8.22 The solid dots represent points along the spiral. Each dot moves up one
level and counter clockwise one-eighth of a turn. Using an eight-point ellipse, nine
ellipses will make one complete coil.
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Figure 8.23 Connect the dots to create a spiral. Add thickness to the spiral to create
a spring.






Figure 8.24 Create another spiral above the first to make a ribbon, candy cane, or
barbershop pole.

Spiral Staircase

Drawing a spiral staircase follows the same principles as any spiral form. A
spiral staircase is a series of triangles moving up and around a circle. First,
decide on the size of the steps. Divide the ellipse like a slice of pie. Each slice
represents one step. Draw one step. Then draw another, one level above the
first. The third step is one level above the second, and so on. Each step
moves to the left and up one level (spiral staircases always go up clockwise).
The spiral staircase will turn and rise as each step is built (Figure 8.25).
Continue adding steps. Draw handrails by following the same guidelines
(Eigure 8.26).



Second step

Figure 8.25 Build a spiral staircase one step at a time.
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Figure 8.26 Add a handrail to finish the staircase.

Random Curves

The solution to drawing sinuous undulating lines where one shape flows
seamlessly into another is not complicated. It is more tedious than elegant.
Drawing curved lines involves plotting points along the curve and then
connecting the dots. The more points that are plotted, the more accurate the



curve. First, draw the serpentine shape in a plan or elevation view, a view
without perspective. Measure key points along the curve. Then transfer those
dimensions to a perspective view (Figure 8.27).

VP

SP

Figure 8.27 This curved line was first drawn in an elevation view (lower left). Key
points along the curve were measured. Those points were then plotted in
perspective. Connect the points to create a perspective curve (upper right).



9
Inclined Planes

Inclines continued to challenge artists long after the foundations of
perspective had been established. When artists discovered that foreshortened
lines connect to vanishing points on the horizon, it was a difficult concept to
shed. Artists who attempted to draw inclines using points on the horizon line
were met with curious results. The shapes looked tapered (Figure 9.1). This
outcome made it obvious that something was amiss. Eventually it was
reasoned that inclines connect to points above or below the horizon.
Vanishing points on the horizon line draw lines parallel with the ground
plane. Vanishing points above or below the horizon line draw lines at an
angle to the ground plane.




Figure 9.1 Jan Vredeman de Vries, Perspective, 1604. Notice the vanishing points for
the inclines are erroneously placed on the horizon line.
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Figure 9.2 Angles parallel with the picture plane have no vanishing points and are
drawn as true angles.

One-Point Inclines

There are two types of one-point inclines: angles that are foreshortened
(lines that are not parallel with the picture plane), and angles that are
foreshortened (lines that are parallel with the picture plane). Angles parallel
with the picture plane have no vanishing point. They are drawn as true
angles (Figure 9.2). These are the simplest, yet the most deceiving, as many
erroneously attempt to locate a vanishing point where none exists.

Lines angling toward or away from the viewer are foreshortened. These
angles have vanishing points. These vanishing points are located above or
below the horizon line and are called auxiliary vanishing points (AUX. VP).
One-point perspective auxiliary vanishing points are aligned vertically with
the center of vision (Figure 9.3).

Upward Inclines

Whether a slope angles up or down depends on the point of view. If standing
at the top of the slope, the incline angles down. If standing below, the incline
angles up. Inclines with auxiliary vanishing points above the horizon line are
referred to as upward inclines, and inclines with auxiliary vanishing points
below the horizon line as downward inclines (Eigure 9.3).

The farther away the auxiliary vanishing point is from the horizon line,
the steeper the incline. To draw an incline at a specific degree, a point for
true angles is needed.

Vanishing Point



True angles for horizontal lines are found at the station point. The station
point is used for angles parallel with the ground plane. Inclines can’t use the
station point. True angles for inclines are found at the measuring point. Any
angle drawn at the measuring point creates an auxiliary vanishing point that
draws that same angle in perspective. For example, if the desired slope is 30°,
use a 30° angle at the measuring point. Extend that angle until it intersects a
point directly above (or below, depending on the incline) the center of vision
(Figure 9.4-5).

Auxiliary Measuring Point

To measure the incline requires a measuring point. Geometry determines its
placement. From the auxiliary vanishing point, draw a horizontal line. This
line is called an auxiliary horizon line (AUX. HL). The auxiliary horizon line
functions as a placeholder for the measuring point. The auxiliary measuring
point is placed on this line.

Measure the distance from the auxiliary vanishing point to the one-point
measuring point. Transfer that distance to the auxiliary horizon line (Figure
9.6).
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Figure 9.3 Inclines not parallel with the picture plane are foreshortened and have
vanishing points above or below the center of vision.
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Figure 9.4 The measuring point is the true angle for inclines. Use the measuring
point to establish the location of auxiliary vanishing points.
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Figure 9.5 Any line drawn from the 30° auxiliary vanishing point creates an incline
30° from the ground plane.
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Figure 9.6 The distance from the auxiliary vanishing point to the measuring point
is the same as the distance from the auxiliary measuring point to the auxiliary
vanishing point.

Measuring the Incline

There is an important difference between measuring a line parallel with the
ground plane and measuring a line angled to the ground plane. When
measuring inclines, the measuring line must touch the line being measured
(Figure 9.7). The geometry required to measure lines will be incorrect if this
requirement is not met (see Chapter 11). It is often necessary to use a
reference point to reposition the measuring line.
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Figure 9.7 Measuring one-point inclines. Creating a 30° incline (above), and
measuring a 4 unit length (below).

Downward Inclines

Downward inclines have an auxiliary vanishing point below the horizon line.
The steps are the same as upward inclines, except they are done upside-
down. Use the measuring point to establish the auxiliary vanishing point
(Eigure 9.8). Plot the auxiliary measuring point (Figure 9.9). Draw the incline
(Figure 9.10). Measure the incline (Figure 9.11).
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Figure 9.8 Use the measuring point to find the auxiliary vanishing point.
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Figure 9.9 Create an auxiliary horizon line, then measure the distance from the
auxiliary vanishing point to the measuring point and transfer that distance to the
auxiliary horizon line.
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Figure 9.10 This auxiliary vanishing point draws inclines at a 30° angle to the
ground plane.
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Figure 9.11 Use the auxiliary measuring point to measure the incline. Horizontal
lines are parallel with the horizon line.
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Figure 9.12 Two-point perspective auxiliary vanishing points are aligned with the
left or right vanishing point.



Two-Point Inclines

Auxiliary vanishing points are aligned with vanishing points on the horizon
line. In two-point perspective there is a left and a right vanishing point. So,
which one should be used? Is the auxiliary vanishing point aligned with the
right vanishing point or the left vanishing point? It can be confusing. More
choices mean more opportunities to make mistakes. Fortunately, when a
mistake is made, it is usually obvious and the drawing looks amiss. When
this happens, it is time to reevaluate the choices made. With practice,
choosing the location of the auxiliary vanishing point becomes intuitive.
Until that time, there are guidelines to assist in their selection.

Placement

Auxiliary vanishing points can be above or below the left or right vanishing
point. As a guide, consider how inclines recede in space. Think about
diminution. Things closer to the viewer are larger; things farther away are
smaller. How forms behave in perspective gives important clues for correctly
locating the auxiliary vanishing point (Figure 9.12).

Another helpful hint in locating the auxiliary vanishing point is to
consider the incline’s axis. If the axis of an incline connects to the left
vanishing point, the auxiliary vanishing point must be above or below the
right vanishing point. Conversely, if the axis of an incline is aligned with the
right vanishing point, then the auxiliary vanishing point must be on the left
side (Figure 9.13).

Practice drawing inclines until confident with the correct positioning of
the auxiliary vanishing points. When comfortable that these points can be
properly located, it is time to draw specific angles.

Upward Inclines



Once the proper location of the incline’s vanishing point is determined, the
next step is to find the incline’s angle, or the degree of the slope.

Measuring points provide true angles for inclines. If the auxiliary
vanishing point is above or below the right vanishing point, use the right
measuring point to find the true angles. Conversely, if the auxiliary
vanishing point is above or below the left vanishing point, use the left
measuring point to find the true angles. For example, to draw a 30° incline
that tilts up and to the right, draw a true 30° angle from the right measuring
point (Figure 9.14).

Auxiliary Measuring Point

Establishing an auxiliary measuring point follows the same procedure used
in one-point perspective. Create an auxiliary horizon line. Measure the
distance between the auxiliary vanishing point and the measuring point.
Transfer that distance to the auxiliary horizon line (Eigure 9.15).
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Figure 9.13 Auxiliary vanishing points are always opposite to the axis of rotation.
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Figure 9.14 Use the measuring point to find the location of the auxiliary vanishing
point.
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Figure 9.15 Use a compass or ruler to establish the auxiliary measuring point.

Measuring Line

As with all inclines, the measuring line must touch the line being measured
(Figure 9.16).
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Figure 9.16 To measure an incline, the measuring line must touch the line being

measured. This incline is 4 units long.

Downward Inclines

Downward inclines are approached the same as upward inclines. Do the

same procedure upside-down (Figures 9.17-9.19).
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Figure 9.17 Finding the auxiliary vanishing point.
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Figure 9.18 To find the auxiliary measuring point, measure the distance from the
auxiliary vanishing point to the left measuring point, and transfer that distance to
the auxiliary horizon line.
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Figure 9.19 When measuring the slope, ensure the measuring line touches the line
being measured. This incline is 4 units long.

An Alternative Method

One-Point Inclines

Often, there are several methods to solve a perspective problem, each with
its own advantages and disadvantages. Drawing steep inclines using
auxiliary vanishing points can be inconvenient, as the vanishing and
measuring points are often beyond the edge of the paper. The following
alternative method is not an elegant solution, but it does keep all the points
on the paper.

Any incline can be thought of as a right-angled triangle (a triangle with a
90° corner). This right-angled triangle has a horizontal and a vertical leg. The
hypotenuse of the triangle is the incline (Figure 9.20).
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Figure 9.20 This incline is a right-angled triangle. Its hypotenuse is 5 units long,
angled 30° from the horizontal leg.
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Figure 9.21 First, draw an elevation view parallel with the picture plane using true

dimensions and the true angle of the incline.

In this alternative method, first draw an elevation view of the incline. This
elevation view has no perspective. It is drawn to scale, using true dimensions

(Figure 9.21).

The next step is to transfer the dimensions of the elevation view into a
perspective view. Use a measuring point to transfer the length of the
horizontal leg to a foreshortened line (Figure 9.22). Use the same measuring
point to transfer the height of the vertical leg into position (Figure 9.23).

Connect the ends of the two legs to create the incline (Figure 9.24).



Figure 9.23 Transfer the vertical line in perspective.



Figure 9.24 Completing the incline.

Two-Point Inclines

Using the alternative method in two-point perspective follows the same
basic procedures as one-point. The difference being that the right or left
vanishing point is used instead of the center of vision. Draw the incline in an
elevation view, and then project those dimensions to a perspective view
(Figure 9.25).
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Figure 9.25 Projecting the dimensions of an elevation view to a perspective view is
an alternative method to draw two-point inclines.



10
Inclined Cuboids

The previous chapter outlined the procedures to draw an inclined plane. A
plane has only two dimensions. This chapter adds the missing dimension and
begins where Chapter 9 left off. As such, it is helpful to have a good
understanding of inclined planes before progressing to drawing inclined
cuboids.

One-Point Perspective

Draw a one-point perspective inclined plane (Figure 10.1). See Chapter 9 for
step-by-step instructions.
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Figure 10.1 A one-point perspective inclined plane, 2 units wide, 5 units long, at a
36° incline.

Auxiliary Vanishing Point

A third dimension is extruded from this inclined plane. All the corners are
right angles. The thickness projects 90° from the inclined plane. To draw the
thickness, another auxiliary vanishing point is needed, a point 90° from the
original auxiliary vanishing point. Thus, the first step is to locate the point of
true angles—the measuring point. At the measuring point, draw a 90° angle
from the original auxiliary vanishing point. There are now two auxiliary
vanishing points that are 90° apart (Figure 10.2).
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Figure 10.2 The upper and lower auxiliary vanishing points are 90° apart at the
measuring point.



Any line drawn from the lower auxiliary vanishing point will create a 90°
angle to any line drawn from the upper auxiliary vanishing point (Figure
10.3).
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Figure 10.3 Lines drawn from the lower auxiliary vanishing point are right angles
to lines drawn from the upper auxiliary vanishing point.



Measuring the Thickness

Establish measuring points as described in Chapter 9 (Figure 10.4).
Remember, the measuring line must touch the line being measured (Eigure
10.5).
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Figure 10.4 The distance from the auxiliary vanishing point to the measuring point
is the same as the distance from the auxiliary vanishing point to the auxiliary
measuring point.
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Figure 10.5 Position the measuring line so that it touches the line being measured.
This illustration shows a length of 2 units.

Completing the Box

Connect the lines to the proper vanishing points to complete the box (Figure
10.6).
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Figure 10.6 Connect lines to vanishing points to complete the box.

Inclined Two-Point Cuboids

Draw a two-point perspective inclined plane (Figure 10.7). See Chapter 9 for
step-by-step instructions.
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Figure 10.7 The starting point is a two-point perspective inclined plane. It is 6 units
wide and 7 units long, tilting up from the ground plane at 45°.

Auxiliary Vanishing Points

Angled cuboids have three vanishing points: two auxiliary vanishing points
and one vanishing point located on the horizon line. The auxiliary vanishing

points are always aligned vertically. They are above and below the left or
right vanishing point.



To draw 90° corners, the auxiliary vanishing points must be 90° apart. True
angles for inclines are found at the measuring point. Inclines to the left use
the left measuring point, and inclines to the right use the right measuring
point (Figure 10.8). A right angle drawn at the measuring point creates
auxiliary vanishing points that draw right angles in perspective (Figure 10.9).
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Figure 10.8 A right angle at the measuring point creates two auxiliary vanishing
points 90° apart.
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Figure 10.9 Project lines from the lower auxiliary vanishing point to create 90°
corners.



Measuring Point

Establish the auxiliary measuring point using the procedure outlined in
Chapter 9 (Figure 10.10). Measure the desired thickness of the box. Make
sure the measuring line touches the line being measured (Eigure 10.11).
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Figure 10.10 Measure the distance from the auxiliary vanishing point to the
measuring point and transfer that distance to the auxiliary horizon line.
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Figure 10.11 The measuring line must touch the line being measured. This example
shows a length of 3 units.



Complete the Box

Connect lines to appropriate vanishing points to complete the box (Figure
10.12).
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Figure 10.12 Connect lines to vanishing points to complete the box.



11
Incline Geometry

Chapter 6 explored the geometry of measuring points, the importance of
isosceles triangles, and how measuring points draw isosceles triangles in
perspective. Auxiliary measuring points also draw isosceles triangles, the
only difference being that the isosceles triangle is at an incline. If the line
being measured is parallel with the ground plane, the isosceles triangle is
also parallel with the ground plane (Figure 11.1, top). If the line being
measured is inclined, the isosceles triangle is also inclined (Figure 11.1,
bottom).

It has been stated several times that, when measuring inclines, the
measuring line must touch the line being measured. This, however, is not the
case when measuring lines parallel with the ground plane. Why the
aberration?

Lines drawn from auxiliary vanishing points are angled to the ground
plane. Likewise, lines drawn from auxiliary measuring points are also angled
to the ground plane. Lines drawn from the auxiliary measuring point would,
if extended, follow a path underground. If the measuring line did not touch
the line being measured, the line projected from the auxiliary measuring
point would never contact the measuring line. Because of this, it is necessary
for the measuring line to be in a very specific location—touching the line
being measured (Eigure 11.1). If the measuring line is not already touching
the line being measured, the measuring line must be moved so that it does.
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Figure 11.1 Measuring points located on the horizon line create isosceles triangles
parallel with the ground plane (top). Auxiliary measuring points create isosceles



triangles at an angle to the ground plane (bottom).

Vertical Auxiliary Measuring Points

In previous examples, the auxiliary measuring point was placed on an
auxiliary horizon line (Figure 11.2, line “C,” inset). Yet, auxiliary measuring
points do not need to be on the auxiliary horizon line; there are many places
the measuring point can be sited. Often, the most convenient location is on a
vertical line, the line connecting the two auxiliary vanishing points (Figure
11.2, line “B,” inset). However, no matter where its location, a measuring
point must always draw isosceles triangles. For this to happen, the geometry
must be correct. For the geometry to be correct, an important rule must be

followed.
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Figure 11.2 The auxiliary measuring point can be on a vertical line as well as a
horizontal. The distance from the measuring point to the auxiliary vanishing point
(Line “A”) must be the same as the distance from the auxiliary vanishing point to
the auxiliary measuring point (Line “B” or “C”).



The relationship between a measuring point and the measuring line is
critical. For a measuring point to draw an isosceles triangle, the measuring
line must be parallel with the line the measuring point is on. If the
measuring point is on a horizontal line (e.g., the horizon line, or the auxiliary
horizon line) the measuring line must also be horizontal. If the measuring
point is on a vertical line, the measuring line must also be vertical (Figure
11.3).
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Figure 11.3 The measuring line must be parallel with the line the measuring point
is on. If the measuring point is on a vertical line, the measuring line must also be

vertical.



Figure 11.4 A box measuring 3 units high 4 units wide, and 2 units deep at a 35°
incline.

The primary advantage of placing the measuring point on a vertical line is
its proximity. Inclines often lead to points beyond the page’s border. If the
auxiliary vanishing point is off the page, the auxiliary measuring point will
be even farther away. Placing the measuring point on a vertical line keeps
the measuring points close at hand.

To demonstrate this, draw a box that is 3 units tall, 4 units wide, and 2
units deep, inclined at a 35° angle (Figure 11.4).

Using a vertical measuring point (VMP) and vertical measuring line,
measure the height and width (Figures 11.5-11.6). Then connect the lines to
the appropriate vanishing points to complete the box (Figure 11.7).
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Figure 11.5 Using a vertical measuring point and a vertical measuring line to
measure a 3 unit length.
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Figure 11.6 Using a vertical measuring point and a vertical measuring line to
measure a 4 unit length.
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Figure 11.7 Connect corners to vanishing points to complete the box. Use the
horizontal measuring line to measure the depth (2 units).



More on Measuring Point Geometry

Measuring points can be on horizontal lines or vertical lines. These are the
two most logical and practical locations. Placing them elsewhere is not
advised—but it is possible.

The measuring point can be anywhere, if two crucial rules are adhered to:
1) the measuring point must be the same distance from the vanishing point
as the vanishing point is from the station point; and 2) the measuring line
must be parallel with the line the measuring point is on. If these two rules
are followed, the measuring point will draw an isosceles triangle (Eigures
11.8-11.10).
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Figure 11.8 The measuring point can be placed to the right or the left of the
vanishing point. Both measuring points draw isosceles triangles. Both can be used
to measure lines that connect to the left vanishing point.
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Figure 11.9 Measuring points can be on a vertical line, but the measuring line must
also be vertical.
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Figure 11.10 Measuring points can be on a diagonal line, if the measuring line is at
the same angle.
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The Problem of Distant Vanishing Points

When plotting vanishing points, they can, from time to time, fall off the
page, sometimes very far off the page. Before buying a very long desk and
ruler, and taping paper together end to end, there is another solution. It
borrows a page from the grid approach to perspective.

The Grid Approach

If the vanishing point is off the page, create a grid directing the lines to that
distant point. This grid is based on the fact that evenly spaced parallel lines
remain proportional as they recede.
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Figure 12.1 Creating a grid to find a vanishing point off the page.



The line drawn from the station point leads to a vanishing point far off the
page. Knowing this, divide the distance between that line and the horizon
into evenly spaced segments. The number of divisions used are at the artist’s
discretion. The more divisions, the tighter the grid (Figure 12.1). This grid
serves as a guide to the distant vanishing point. Once the grid is in place, use
it to gauge the direction of diminution. Create as fine a grid as needed to
guide the drawing (Figure 12.2).

HL v RVP

Wi .
@rgmg |ir|e

e
\
§

[0 INCA

SP

Figure 12.2 Drawing a box using the grid. The grid creates a guide. Align the
foreshortened lines of the object to the grid.

Shortcut

To save some time—and some lines—here is a shortcut. Instead of dividing
the length of each line into a series of even spaces, divide the line in half.
Continue to divide into halves until there are enough lines to do the job.
Often only a few lines are needed (Figure 12.3).
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Figure 12.3 This shortcut is a fast and simple way to create a grid.

Measuring

Foreshortened lines are now able to be drawn without a vanishing point.
Next, a way to measure those lines is required. But without the vanishing
point, how is the measuring point located? There are a few solutions. This
first method is a three-step process. First, measure the distance from the
station point to the center of vision. Then transfer that distance to the line
connecting the station point to the vanishing point. From this intersection,
draw a right angle, projecting it to the horizon line (Figure 12.4).
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Figure 12.4 Finding a measuring point without using a vanishing point.

Inclines

This method is useful when working with inclines, where the auxiliary
vanishing point is often off the page. The procedure is the same, but the
diagram is turned 90°. This method necessitates the auxiliary measuring
point being on a vertical line (Figure 12.5).
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Figure 12.5 Using a grid to access a distant auxiliary vanishing point. The auxiliary
measuring point is on a vertical line, so the measuring line will also need to be
vertical.



Using a Protractor

An alternative method to locating the measuring point is using a protractor.
The measuring point is half way (in degrees) between the center of vision
and the vanishing point. For example, if the angle between the line of sight

and the right vanishing point is 24° then the measuring point is at 12° (Figure
12.6).
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Figure 12.6 Using a protractor to find a measuring point.
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Falling and Rotating Forms

Auxiliary vanishing points can be daunting. Practice simple planes first, then
advance to three-dimensional forms. When comfortable drawing inclines at
various angles, apply that knowledge to more elaborate scenes. Try
incorporating several objects in a drawing, relating one object’s movements
to another.

Rotating Objects Example

Figure 13.1 The final drawing. A sequence of three boxes, each 1 unit tall, 2 units
long, and 2 units deep, along a curved trajectory.



Here is an example combining information from Chapter 8 and Chapter 10.
In this example, a curved line will be drawn in perspective, with a series of
three objects rotating along that curve. They are spinning while they travel
along a curved trajectory (Figure 13.1). This is more ambitious than previous
examples, but there is nothing new in this series—the information has been
covered before. Since much of this chapter is combining previous
procedures, prior pages are referenced when appropriate.

The Axis Point

Assuming an object is balanced, and not heavier on one side, it will rotate
along a central axis. To accurately measure the object, it must be measured
from the axis point (the center of the box).

The Angles

The box is 1 unit high, 2 units long, and 2 units deep. Each sequence is
separated by 20°. The first box rotates 40° counterclockwise, the second 80°,
and the third 120°. It is helpful to draw an elevation view of complicated
inclines, as it gives a visual of the true angles (Figure 13.2). This drawing may
seem onerous, but drawing an angled box is no more difficult than drawing
one angled line. Similarly, drawing three angled boxes is as easy as drawing
one angled box. Draw this series one box at a time, and draw each box one
line at a time.



Elevation view

Figure 13.2 It is helpful to draw an elevation view of complicated scenarios. These
are the angles and dimensions of the falling, rotating box.

The Arc

Begin by drawing the arc. This is the path the boxes will follow. The center
of each box is aligned with this curve (Figure 13.3). Refer to Chapter 8,
Figure 8.27.

Auxiliary Vanishing Points

After the arc and the center of all three boxes are plotted, the next task is to
locate the auxiliary vanishing points. Each box is at a different angle, so each
box will need a different pair of auxiliary vanishing points (this is best done
on separate overlays). When drawing inclines, true angles are found at the
measuring point. It is helpful to think of the measuring point as an elevation
view of the incline. Place the angles given in the following instructions on
the measuring point. Then project those angles to create auxiliary vanishing
points (Figure 13.4).
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Figure 13.3 Drawing the arc of travel, and the center points of each box (see for

Figure 8.27 another example of plotting points along a curved line).
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Figure 13.4 Auxiliary vanishing point angles for each box.

Bottom Box

Start with the box closest to the viewer—the bottom box. This box is tilted at
a 60°/30° angle to the ground plane (Figure 13.4, top). From the measuring



point, project a 30° angle to find the upper auxiliary vanishing point. Then,
project a 60° angle to find the lower auxiliary vanishing point (Eigure 13.5).
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Figure 13.5 The box closest to the viewer is angled 60°/30° from the ground plane.
Place those same angles at the measuring point.

Auxiliary Measuring Points

Next, establish the auxiliary measuring points (Figure 13.6). To save space,
use vertical measuring points. Refer to Chapter 11, Figure 11.2.
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Figure 13.6 Placing the auxiliary measuring point on a vertical line keeps it nearby.

The lower auxiliary vanishing point is off the page. Use the technique
outlined in Chapter 12, Figure 12.4 to compensate for this plight (Figure
13.7).
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Figure 13.7 Establishing a vertical auxiliary measuring point when the auxiliary
vanishing point is too far to reach.

Measuring Depth

The depth is 2 units. Measure from the center of the box, 1 unit on each side
of the axis point. If using a vertical measuring point, make sure the
measuring line is also vertical and positioned at the axis point of the box,
touching the line being measured (Figure 13.8).
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Figure 13.8 Measuring 2 units along the center plane.

Measuring Height

The height is 1 unit. Since the lower auxiliary vanishing point is off the page,
use the technique outlined in Figure 12.3 to create a grid. The grid assists in
guiding the direction of the lines. Make the grid as tight as needed (Eigure
13.9).
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that are far off the page (see Chapter 12).

Figure 13.9 Create a grid to guide lines to the lower auxiliary vanishing point. See
Chapter 12 for step-by-step instructions.

Measure 0.5 units on each side of the axis point (Figure 13.10).
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Figure 13.10 Measure 0.5 units on each side of the zero point to establish the
height.

Complete the Box

Connect corners to vanishing points to complete the box (Figure 13.11).
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Figure 13.11 Connect to vanishing points to complete the box.

Middle Box

The middle box is drawn in the same fashion as the first. The steps are the
same. However, the measuring line must be moved back in space (in
perspective). The measuring line must touch the center (axis point) of the
box being measured.

In this case, to measure the depth, place the auxiliary measuring point on
a horizontal line. It is closer and more convenient than placing it on a
vertical line (Figure 13.12). It is useful to have options. To complete this box,
follow the same steps used to draw the previous box (Figure 13.13).



1
S it To AUX. VP
A

N
5%

<

Elevation view VML,

— RVP

<~y AUX. MP]

AUX. HL

AUX. vp2

SP

e AUK MP2 AUX. HL

Detail: Measuring 2 units using a horizontal

Detail: Measuring 1 unit using a vertical
measuring point and measuring line.

measuring point and measuring line.

Figure 13.12 For the middle box a horizontal measuring line was used for the depth
(2 units), and a vertical measuring line was used for the height (1 unit).

Top Box

When drawing the top box, repeat the process used to draw the bottom box.

Use vanishing points and measuring points that correspond to the 50° and 40°
angles (Figure 13.13).
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14
Tilted Tapered Forms

A tapered cup is simple when upright (Figure 8.16). When it tips over, it is
not so simple. A tapered cup on its side creates some challenging angles, as
well as an opportunity to practice ellipses.

The Cup

As an example, use the cup drawn in Figure 8.16. The cup is 1.5 units tall. The
diameter of its base is 1 unit and the diameter of its top is 2 units. It may be
worth reviewing Chapter 9, as this chapter builds on that information. Keep
in mind that there are several ways to solve this problem. Understanding the
geometry of perspective reveals a myriad of solutions. When several
resolutions to the same problem can be conceived, the power of angles is
beginning to be understood.

Elevation View

As pointed out previously, it is prudent to draw an elevation view of
complicated inclines. An elevation view gives insight to the angles that will
need to be drawn. The cup, when on its side, creates a 72° angle (rounded
off) from the ground plane to its base (Eigure 14.1).



Figure 14.1 The angles and dimensions needed to draw the cup are best shown in
an elevation view (left). The completed drawing is illustrated (right).

Base

The base’s diameter is 1 unit. First, draw a 1 unit square, tilted 72°. Then
draw an ellipse inside the tilted square (Figure 14.2). Review Chapter 8 for
methods to draw an ellipse.



AUX. VP

72°
AUX.
Mmp

LvP

To 72° AUX. VP
To 72° AUX.VP

Figure 14.2 Using the left measuring point, create a 72° incline.

Height

The cup is 1.5 units tall. The centerline of the cup is 90° from the base. To
draw the centerline, first plot an auxiliary vanishing point 90° from the
vanishing point of the base (Figure 14.3). Use this auxiliary vanishing point
to draw the centerline of the cup.
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Figure 14.3 Draw a centerline 90° from the base.

To measure the height, establish an auxiliary measuring point and a
measuring line parallel with the line the measuring point is on.

The measuring line must be moved so that it touches the centerline. There
are many paths to do this. This example uses the 72° auxiliary vanishing
point to project the measuring line up. Then, the right vanishing point is used
to project the measuring line backward until it touches the centerline (Figure
14.4).
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Figure 14.4 Measure the cup’s height (1.5 units) by relocating the measuring line.
It must touch the line being measured.

Top

The 1.5 unit centerline establishes the middle of the cup’s top. The cup’s top
has a radius of 1 unit. Measure out from the center, 1 unit on each side, to
create a 2 unit square, then draw an ellipse (Figure 14.5).
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Figure 14.5 There are several steps in this illustration. First, find the point where
the top of the cup touches the ground. Measure 1 unit on each side of this point.
Project a diagonal line from the bottom left corner through the center point, until
it intersects the top right corner of the square. Draw an ellipse.

Finish

Connect the ends of the two ellipses to finish the cup (Figure 14.6).
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Figure 14.6 Connect the ellipses to complete the cup.
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Perspective in the 1400s

The measurement system that has been used thus far is not the only way to
draw in perspective: there is an alternative to drawing isosceles triangles.
This method does not use measuring lines and measuring points. The
Quattrocento artists approached perspective by projecting the object being
drawn to the picture plane using the visual pyramid (lines drawn to the
viewer’s eye). Today this method is called “plan/elevation view perspective.”
It utilizes techniques that can be traced directly to Leon Battista Alberti. The
plan/elevation view diagram used today is arranged differently, but the
procedure has not changed in 600 years. As a direct descendant of the first
perspective diagram, plan/elevation view perspective presents an
opportunity to discuss some history, and explain perspective’s evolution.
Exploring this 600-year-old procedure segues seamlessly into the modern
measurement system. So, this chapter begins by outlining how perspective
originated.

Fillipo Brunelleschi is the founder of perspective. In 1413 he painted the
first image to fully adhere to its rules. Leon Battista Alberti was the first to
diagram this approach, publishing his book On Painting in 1435, and
introducing perspective to the world. The creative milieu did not
immediately adopt this new procedure. Artists had been painting for
hundreds of years without perspective techniques. Change is difficult, as is
perspective. Many ignored the arduous guidelines. Others, however,
embraced the new technology.

To understand the artists’ emotional response to perspective’s arrival, look
no further than a few decades ago. In many ways, the history of the
computer mirrors the history of perspective. When these electronic
instruments arrived in the art world of the 1980s, they were slow and foreign
to artists accustomed to traditional tools. Many rejected these glowing
boxes, considering them a temporary irritation, a passing fad. They



forecasted the day consumers would tire of the digital look, and long for the
return of the personal touch. This novelty would soon fade, they thought.
Others, however, were excited—even giddy—about the possibilities of these
new contraptions. They saw their potential.

Computers prevailed and are now the standard in commercial art
production. Eventually, perspective theory also prevailed. Understanding and
properly executing perspective soon became orthodox. That is, until modern
art dethroned the depiction of representational space. Perspective, however,
remains a valuable skill. Computers have not eliminated the need for
understanding the geometry of vision.

Perspective, from the beginning, was rooted in geometry. Quattrocento
artists did not rely on angles. They did, however, have a solid understanding
of how the picture plane worked— how lines, projected from the object to
the viewer’s eye, would create an accurate image of reality at the
intersection of the picture plane. They cleverly used this knowledge to
construct a diagram that took advantage of this insight. This diagram gave
artists something they never had: a way to draw with accuracy.

Alberti’s measuring methods

Width

Once artists discovered that parallel lines connect to a vanishing point,
measuring horizontal dimensions was relatively easy. Horizontal lines are
not foreshortened, they are parallel with the picture plane. They can be
measured with a ruler (Eigure 15.1). Measuring depth is trickier.
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Figure 15.1 Evenly spaced horizontal lines receding in space.

Depth

Depth is foreshortened. It can’t be measured directly with a ruler. In the
previous chapters, an isosceles triangle was used to measure foreshortened
lines. The Quattrocento artists approached it differently—they used an
elevation view to plot depth. Drawing the intersection of the visual pyramid
on the picture plane projected the foreshortened line to a flat surface (Eigure
15.2).
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Figure 15.2 Using an elevation view to define depth.

One-Point Diagram

So, now that width can be defined using an elevation view from the front,
and depth defined using an elevation view from the side (Figure 15.1 and
Figure 15.2), combining the two views gives the foundation of Alberti’s 600-
year-old perspective diagram (Figure 15.3). A perspective view of this
diagram may better explain the relationships (Figure 15.4). Alberti’s diagram
creates a one-point perspective grid.
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Figure 15.3 Combining the two elevation views into one diagram.
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Figure 15.4 A three-dimensional view of Figure 15.3.



One-Point Grid

The intersections at the picture plane define depth. Project the intersections
horizontally to create a grid (Figure 15.5).
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Figure 15.5 A one-point perspective grid using Alberti’s 1435 diagram.
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Plan/Elevation View Perspective

The Diagram

Alberti used two elevation views: an elevation view from the front (for
width), and an elevation view from the side (for depth). A more
contemporary approach is to use a plan and an elevation view. The theory is
the same; the configuration is different.

A plan view is a view from above. It shows the station point and its
distance to the picture plane. The elevation view is a view from the front. It
shows the horizon line, the center of vision, and the ground line (because
there is no measuring, the measuring line is now called a ground line)

(Figure 16.1).
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Figure 16.1 Plan and elevation views. On the left is a three-dimensional view. On
the right is how this view is represented on paper.

Station Point

The distance from the station point to the picture plane determines how
large the cone of vision will be. The farther away the viewer is from the
picture plane, the larger the cone of vision (the station point is often placed
below the elevation view to allow for a large image area).

Ground Line
What was called the measuring line is now called a ground line. The ground

line is located at the picture plane and determines the viewer’s eye level. The
closer the ground line is to the horizon line, the lower the eye level.

The Object

The plan view displays the top of the object (this gives the width and depth);
the elevation view displays the front of the object (this gives the height)
(Figure 16.2).
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Figure 16.2 A cube in plan and elevation view, in three- and two-dimensional
views.
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The Drawing

With the elevation and a plan view in place, it is time to create the drawing.
Alberti superimposed the two elevation diagrams, putting one on top of the
other. The modern approach is a little different: the plan view is separated
from the elevation view. The plan view is traditionally placed at the top of
the paper, with the elevation view placed below. It does not matter how far
apart the diagrams are, but the center of vision in the elevation view must
be aligned with the station point below (Figure 16.3).
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Figure 16.3 The plan view is placed above the elevation view. The station point and
center of vision must be aligned.
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The box in this example is in one-point perspective. This is shown by its
position relative to the picture plane. The box in the plan view and the box
in the elevation view are the same object, therefore the plan and elevation
view must be drawn to the same scale. If there are several objects to draw,
the size and positioning of each object must also be to scale.

Elevation View

Foreshortened lines in one-point perspective connect to the center of vision
(Eigure 16.4).
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Figure 16.4 Connect foreshortened lines to the center of vision.
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To measure the depth, draw a line from the back of the box to the station
point. Where this line intersects the picture plane, project downward to the
ground plane, defining the back of the box (Eigure 16.5).
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Figure 16.5 Measure depth by plotting its intersection on the picture plane.
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This is how to draw a box using the plan and elevation method. No
measuring points or measuring line was used, and all dimensions were
projected to the picture plane. Now try to do another one-point view with a
different shape, in a different position.

Objects Not Touching the Picture Plane

When a one-point box touches the picture plane, height and width are actual
size. In this next example, the box is behind the picture plane. Begin by
drawing the diagram. Place the elevation view of the box to the right of the
image area. It is usually more convenient— especially when drawing several
objects—to place the elevation view on the right side of the paper. This keeps
the diagram less cluttered (Figure 16.6, bottom).



Plan view Top

PP
Sp
CV aligned with SP
Elevation view . %
Ccv HL
Front
Ground line

Figure 16.6 Plan and elevation diagram showing a cube in one-point perspective. In
the elevation view, the cube is placed to the right of the image area.

Width

Project the width to the picture plane, then drop that distance to the ground
line. Any point not touching the picture plane must first be projected to the
picture plane, before being drawn to the ground (Figure 16.7).
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Figure 16.7 Plot the width of the cube by projecting it to the picture plane and then
to the ground line.

Depth

Determine depth by drawing a line from the object’s corners to the station
point. Plot the intersection at the picture plane, then project the intersection
to the ground (Eigure 16.8).
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Figure 16.8 Use the station point to plot the depth of the cube.

Height

The elevation view displays the true height at the picture plane. This
dimension must be projected back in space if the object being drawn does
not touch the picture plane (Figure 16.9).
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Figure 16.9 Plot the height of the cube using the elevation view.

Two-Point Plan/Elevation

Finding Vanishing Points

Objects in two-point perspective are angled to the picture plane. These
angles can be seen in the plan view. The placement of the right and left
vanishing points must reflect the angle of the object being drawn. Since
angles at the station point are true angles, the lines projected from the
station point must be parallel with the angles of the object. Where the lines
intersect the picture plane, drop them to the horizon, creating a left and right
vanishing point (Figure 16.10).
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Figure 16.10 Establish vanishing points by drawing lines parallel with the object in
the plan view.

The Drawing

As in one-point perspective, lines that do not touch the picture plane must be
projected to the picture plane. Once the line touches the picture plane, it is
then dropped down to the ground line. From the ground line, connect the
lines to their respective vanishing points. The intersection of the two angles
indicates the front corner of the box (Figure 16.11).
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Figure 16.11 The intersection of the two lines defines the location of the box’s
front corner.

Depth

In the plan view, draw a line from the left and the right corner of the box to
the station point. Use the intersection at the picture plane to define the depth
of the box (Figure 16.12).
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Figure 16.12 To determine depth, draw a line to the station point intersecting the
picture plane, then drop these lines to the box.

Height

Height is determined from the elevation view. Project the height across the
picture plane, then backward using a vanishing or reference point (Eigure
16.13).

Connect lines to vanishing points to finish the box.
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Figure 16.13 Use the elevation view to establish the height. Connect lines to
vanishing points to finish the box.

The Problem of Distant Vanishing Points

If a right or left vanishing point is far off the page (Figure 16.14), the two-
point object can be drawn using one-point techniques. Any single point may
be found using one-point perspective. Once the distant corner is found,
connect the dots (Figures 16.15-16.17).
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Figure 16.14 The right vanishing point is too far away to plot comfortably.
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Figure 16.15 Use one-point perspective techniques to draw the right front corner of
the box. Any point in space can be found using one-point perspective.
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Figure 16.16 Use the same technique to draw the back corner of the box.
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Figure 16.17 Connect the dots to complete the box.
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Three-Point Perspective

Three-point perspective is defined by the center of vision. In one- and two-
point perspective, the line of sight is parallel with the ground plane; the
center of vision is focused on the horizon line. In three-point perspective, the
line of sight is angled to the ground plane; the center of vision is above or
below the horizon line. To put it simply, the viewer is looking up or looking
down in three-point perspective. If the viewer is looking up (a “worm’s-eye”
view), the center of vision is above the horizon line. If the viewer is looking
down (a “bird’s-eye” view), the center of vision is below the horizon line
(Figure 17.1). All lines are foreshortened in three-point perspective, and none
are parallel with the picture plane.
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Figure 17.1 The viewer is looking up or down in three-point perspective.

In three-point perspective, there are a myriad of variables. When
considering the relationship of the viewer to the vanishing points and the
object being drawn, the possibilities seem endless. It is not possible to
address all the situations that might be encountered. However, the following
chapters give a foundation that enables the artist to arrive at solutions to
problems not covered in this book. Before addressing the more obscure and
challenging aspects of three-point perspective, begin by setting up a basic
three-point diagram. This is a generic set-up. Variations will be discussed
later, as well as how to tailor the diagram to specific circumstances.



Three-Point Perspective Components

Picture Plane

The picture plane must be at a right angle to the line of sight. Therefore, in
three-point perspective, the picture plane is angled to the ground plane
(Figure 17.2).

Figure 17.2 The picture plane is at a right angle to the line of sight.

Vanishing Points

Predictably, there are three of them: a right vanishing point, a left vanishing
point, and a vertical vanishing point (VVP). If the object’s angle to the picture
plane is of no concern or is unknown, or the orientation of the line of sight to
the ground plane is unknown, the three vanishing points can be located
anywhere—well, almost anywhere. There are three caveats to keep in mind:
the vertical vanishing point must be between the right and left vanishing



point; the horizon line must be horizontal; and the angle at the vertical
vanishing point must be less than 90° (Eigure 17.3). Within these guidelines,
there are many different configurations possible. How to choose the right
configuration for specific needs will be covered later in this chapter. Until
then, construct a generic three-point diagram with randomly placed
vanishing points.
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Figure 17.3 Follow these guidelines for the proper placement of vanishing points.



The Diagram

The following steps describe the construction of a bird’s-eye view. The steps
for a worm’s-eye view are the same, only upside-down. A worm’s-eye view
diagram is a bird’s-eye view diagram turned 180°.

Center of Vision

Once the three vanishing points have been established, the location of the
center of vision is predetermined. Its position is dictated by the geometry.
First, draw three lines (reference lines) at right angles from the lines
connecting each vanishing point: a left reference line (LRL), a right reference
line (RRL), and a vertical reference line (VRL). The reference lines connect to
the left vanishing point, right vanishing point, and the vertical vanishing
point respectively. These three reference lines intersect at the same spot, at
the center of vision (Figure 17.4).
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Figure 17.4 The location of the center of vision is at the intersection of the three
reference lines.



The intersection of each reference line with their orthogonal creates a
reference point: a left reference point (LRP), right reference point (RRP), and
a vertical reference point (VRP). These reference points are needed to locate
the station points.

Station Points

Each vanishing point has a dedicated station point. The left station point
(LSP), right station point (RSP), and vertical station point (VSP) are necessary
to locate measuring points and define the cone of vision.

Left Station Point

Like the center of vision, the location of the station points is predetermined.

Finding the station points can be a little tricky. First, from the center of
vision, draw a line 90° from the left reference line (Figure 17.5).
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Figure 17.5 From the center of vision, project a right angle from the left reference
line.



Here is the tricky part. From the center of vision, a line needs to be
triangulated between the left vanishing point, the left reference point, and
the line drawn in Figure 17.5. A triangle is the best tool for this job. The left
reference point is at the intersection of the left reference line and the
orthogonal. The station point’s location can vary depending on the diagram.
Its placement is determined by the angles created in this procedure. Follow
them carefully (Eigure 17.6).
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Figure 17.6 Use a triangle to locate the left station point.

Left Measuring Point



Measure the distance from the left vanishing point to the station point, and
transfer that distance to the horizon line using a compass or a ruler. The
distance from the vanishing point to the station point is the same as the
distance from the vanishing point to the measuring point (Eigure 17.7).
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Figure 17.7 Measure the distance from the left vanishing point to the left station
point. Transfer that distance to the horizon line.



Right Measuring Point

Use the right reference line to locate the right station point (Figures 17.8-

17.9). Transfer the distance from the station point to the horizon line (Figure
17.10).
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Figure 17.8 At the center of vision, extend a line 90° from the right reference line.
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Figure 17.9 Triangulate the right vanishing point, the right reference point, and
the right station point.
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Figure 17.10 Measure the distance from the right vanishing point to the right
station point and transfer that distance to the horizon line.



Vertical Measuring Point

Use the vertical reference line to locate the vertical station point (Figures
17.11-17.12). Measure the distance from the vertical vanishing point to the
vertical station point. Transfer that distance to the line that connects the
vertical vanishing point to the left vanishing point. The vertical measuring
point is not on the horizon line (Figure 17.13).
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Figure 17.11 Extend a line 90° from the vertical reference line.
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Figure 17.12 Triangulate the vertical vanishing point, the vertical reference point,
and the vertical station point.



LVP VRP RVP

e e
—— -

—_——
—-
-

LSP i

VRL

VVP

Figure 17.13 Measure the distance from the vertical vanishing point to the vertical
station point. Transfer that distance to the line connecting the left vanishing point
to the vertical vanishing point.



Figure 17.14 The station point is positioned in three different locations.



The Shortcut

It may seem strange that there are three station points—and it should. The
station point represents the viewer, and there is only one viewer. So why are
there three station points? The answer is simple: there are not three station
points. Each station point is the same point. The left, right, and vertical
station points are all equal distance from the picture plane. Each represent
the same point in space. The same station point has been placed in three
different locations, enabling it to find three different measuring points
(Figure 17.14).

This shortcut is based on all three of the station points being equal
distance from the picture plane. Locate one station point, and then repeat
that distance to find the others. After finding the first station point, use a
compass to find the other two (Eigure 17.15). Then add the measuring points
using the previously described method (Figure 17.16).
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Figure 17.15 This shortcut for locating station points saves time and uses fewer
lines.
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Figure 17.16 The distance from the station point to the vanishing point is the same
as the distance from the vanishing point to the measuring point.

Cone of Vision



The cone of vision is, as always, 60°. Any station point can be used to
determine the cone of vision (Figure 17.17). The left, right, or vertical station

point will all give the same result.
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Figure 17.17 To establish the cone of vision, draw a 60° angle from the station
point.

Measuring Line

There are two measuring lines in three-point perspective: a horizontal and a
vertical measuring line. The horizontal measuring line (HML) is used for
measuring lines parallel with the ground plane. The vertical measuring line
(VML) is used for measuring lines perpendicular to the ground plane. For the
geometry to be correct, it is critical that the measuring line is parallel with
the line the measuring point is on. The right and left measuring points are on
the horizon line, so the measuring line must be horizontal. The vertical
measuring point is on an angled line so the measuring line must be at the
same angle. A line perpendicular to the right reference line will be parallel
with the line the measuring point is on. The line the right station point is on
becomes the vertical measuring line (Figure 17.18).
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Figure 17.18 The placement of measuring lines completes the diagram.




Congratulations—the three-point perspective diagram is finished. Now it is
time to draw something.

Drawing a Cube

For the first three-point example, draw a 5 unit cube, its front corner
touching the picture plane and tangent to the center of vision.

Horizontal Dimensions

Measuring horizontal lines (the top of the box) in three-point perspective is
done exactly the same as in two-point perspective (Figure 17.19). The same
rules apply. Confirm that what is being measured and the measuring line are
on the same plane. This can be tricky in three-point perspective, as the
measuring line is not always on the ground.
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Figure 17.19 Measuring horizontal dimensions in three-point perspective is no
different than measuring horizontal dimensions in two-point perspective.

Vertical Dimensions



All vertical lines connect to the vertical vanishing point. To measure these
lines, use the vertical measuring line and the vertical measuring point. In this
example, the line being measured is the vertical reference line.

From the center of vision, count 5 units along the vertical measuring line.
Then, using the vertical measuring point, project that dimension to the
vertical reference line. Connect to the vertical measuring point, intersecting
the vertical reference line. This intersection represents 5 units in perspective
(Figure 17.20).
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Figure 17.20 Use the vertical measuring point to measure vertical dimensions. This

is a 5 unit cube.
The vertical measuring point is used for all vertical measurements. It is

critical that the object being measured is on the same plane as the measuring
line. When measuring vertical dimensions, this can be difficult to determine.



A safe bet is to use the vertical reference line for all vertical measurements.
The vertical reference line is always on the same plane as the vertical
measuring line. Measure the height along the vertical reference line, then
project that distance (using a vanishing point or reference point) to its
desired location. This takes some practice.

Ground Plane

In Figure 17.20, the top of the cube is at the level of the horizontal measuring
line. It is 5 units above the ground plane. If the horizontal measuring line is
on the ground plane, measure vertical dimensions up instead of down. The
measurements are still along the vertical measuring line, still projected to the
vertical measuring point, and still placed along the vertical reference line.
Now the bottom of the box is on the same plane as the horizontal measuring
line, and the fop of the box is 5 units above (Figure 17.21).
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Figure 17.21 Measuring above the horizontal measuring line follows the same
procedures as measuring below the horizontal measuring line. The shaded area

represents the part of the box that is behind the picture plane.

Worm’s-Eye View



A bird’s-eye view diagram turned upside-down becomes a worm’s-eye view
diagram. The diagram is the same, only rotated 180°. All the guidelines for
constructing the diagram and for measuring objects still apply. When
drawing a worm’s-eye view there are, however, a couple of issues to keep in
mind when measuring and establishing the ground plane.

Establishing the Ground Plane

Measuring Width

The horizontal measuring line is tangent to the center of vision. The center of
vision, being above the horizon line, requires that all horizontal
measurements take place above the ground plane (Figure 17.22). For
example, if the horizontal measuring line is 4 units above the ground plane,
make all the horizontal measurements at that level.
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Figure 17.22 This 5 unit square is drawn on the same plane as the measuring line.

Measuring Height



For an object to be sitting on the ground (as opposed to floating above the
ground), its base must be at or below the horizon line. Once the width and
depth of the object has been established, measure down to the ground plane.
The ground plane can be located anywhere. The farther that is measured
down, the higher the horizontal measuring line will be. How tall the object is

decides where the ground is (Figure 17.23).
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Figure 17.23 The top of this box and the horizontal measuring line are 4 units
above the ground plane.

All of the previous examples have had the corner of the box touching the
center of vision. Before moving on, here is an example where the box is in a
different location. The plan and elevation views describe its position (Figure
17.24).
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Figure 17.24 Horizontal dimensions are measured at the level of the horizontal
measuring line. Vertical dimensions are measured along the vertical reference line
and then projected to their desired location.



18
Three-Point Angles

Now that the basics of three-point perspective have been covered (as
unlikely as it may seem— yes, that was only the basics), vanishing points can
be found and objects can be measured. But, using this knowledge, all objects
would be parallel] with each other. To draw objects at different angles
requires different vanishing points. The following explains how to find them.

Left, Right, and Vertical Axes
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Figure 18.1 An object can rotate along three axis points.

An object can turn in three directions: along a vertical axis, a right axis, or a
left axis. This coordinates with the vertical, right, and left vanishing points.
The Cartesian coordinate system of X-, Y-, and Z-axis can be confusing when
working with three vanishing points, so the terms left, right, and vertical will
be used instead (Figure 18.1). These angles will be tackled one at a time.

Vertical Axis



As an object turns on a vertical axis, the left and right vanishing points
change position. In one- and two-point perspective, the station point is used
to find new vanishing points. Three-point perspective is different: the station
point cannot be used. A different point is needed, a point of true angles, 90°
from the left and right vanishing points. From this point, new left and right
vanishing points can be found. This point is referred to as a vertical axis
point (VAP). It is located on the vertical reference line, 90° from the right and
left vanishing points. Use a triangle to draw a 90° corner along the vertical
reference line. Make sure the legs of the triangle connect to the left and right
vanishing points. To establish new left and right vanishing points, use this
point as a station point when drawing in two-point perspective (Figure 18.2).
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Figure 18.2 True angles for all horizontal lines are found at the vertical axis point.

Vanishing Points

Any angle drawn from the vertical axis point creates a vanishing point that
draws that same angle in perspective. For example, to rotate a box 20°

clockwise, draw a true 20° angle at the vertical axis point, and project that
angle to the horizon line (Figure 18.3).
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Figure 18.3 Angles projected from the vertical axis point create vanishing points
that draw those same angles in perspective. These two new vanishing points are
rotated 20° clockwise.

Measuring Points

New measuring points are needed for the new vanishing points. Measure the
distance from the new vanishing point to the vertical axis point, and then
project that distance to the horizon line (Figure 18.4). Measure width using
the same procedures as in two-point perspective (Figure 18.5).
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Figure 18.4 To locate measuring points, measure the distance from the vanishing
points to the vertical axis point. Transfer that distance to the horizon line.
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Figure 18.5 Measuring horizontal lines is accomplished using the same technique
as two-point perspective.



One-Point Objects

If an object continues to turn along a vertical axis, eventually one side will
be parallel with the picture plane (Figure 18.6).

This is a one-point object viewed in three-point perspective. Lines parallel
with the picture plane have no vanishing point. Vertical lines still connect to
the vertical vanishing point. Lines representing depth connect to the vertical
reference point (Eigure 18.7).

A

Figure 18.6 Looking down at a one-point cube.
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Figure 18.7 When drawing a one-point perspective box in three-point perspective,
foreshortened lines connect to the vertical vanishing point and the vertical
reference point. Horizontal lines are parallel with the picture plane and have no
vanishing point.

Measuring Width



Width is not foreshortened. Measure these dimensions along the horizontal
measuring line as if drawing in one-point perspective (Figure 18.8).
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Figure 18.8 Measure width along the horizontal measuring line and connect to the
vertical reference line. This box is 2 units wide—1 unit to the left, and 1 unit to the
right—with its center at the center of vision.

Measuring Height



Measure vertical dimensions along the vertical reference line. The vertical
reference line is on the same plane as the measuring line (Figure 18.9).
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Figure 18.9 Measure the height along the vertical reference line. The bottom of the
box is 3 units below the horizontal measuring line.

Measuring Depth

The vertical reference point serves as the vanishing point. To find the
measuring point, use a compass. Measure the distance from the vertical



reference point to the vertical axis point and transfer that distance to the
horizon line. The measuring point can be placed on the right or left side.

With the measuring point in place, measure using the technique in one-
point perspective (Figure 18.10).
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Figure 18.10 Find measuring points using the vertical axis point and measure as per
one-point perspective.

Right Axis



In this next example, the box is rotating along an axis that aligns with the
right vanishing point. This box tilts backward to the left or forward to the
right. All lines parallel with the axis of rotation still connect to the right
vanishing point. As the object rotates, the left and vertical vanishing points
change position, and the right vanishing point remains in its place. To rotate
an object along a right axis, new left and vertical vanishing points are
needed.

Right Axis Point

To move the location of the left and vertical vanishing point, a right axis
point (RAP) is needed. The right axis point is the point of true angles
between the left and vertical vanishing points. Use a triangle and align its
legs to the left and vertical vanishing points. Place the 90° corner of the
triangle on the right reference line. This marks the location of the right axis
point (Figure 18.11).
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Figure 18.11 The right axis point must be placed on the right reference line, 90°
from the left and vertical vanishing points.

Vanishing Points

A 90° angle placed at the right axis point creates two vanishing points that
draw 90° angles in perspective. The new vanishing points are placed along
the line that connects the left and the vertical vanishing points. To



accommodate the new vanishing points, this line may be extended to
whatever length necessary (Eigure 18.12).
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Figure 18.12 Using the right axis point, create two new vanishing points by
rotating the 90° angle. These new vanishing points are rotated 20° clockwise from
the original.



Measuring Points

The measuring points are placed on the same line as the vanishing points.
Measure the distance from the vanishing point to the right axis point. The
distance from the vanishing point to the measuring point will be the same
length (Figure 18.13). Use a compass or ruler to transfer the distance.
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Figure 18.13 To establish the measuring points, measure the distance from the
vanishing point to the right axis point. Project that distance to the line connecting
the vanishing points.



Measuring Line

The measuring line must be parallel with the line the measuring points are
on. Since the measuring points are on an angled line, the measuring line
must be at the same angle (Figure 18.14).

The measuring procedure is the same—except it is sideways. Confirm that
the object being measured is on the same plane as the measuring line.
Determining this can sometimes be challenging; it takes some practice.
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Figure 18.14 The measuring line must be parallel with the line the measuring
points are on (the line parallel with the right station point becomes the measuring

line).



Complete the Box

Connect lines to the new vanishing points. Lines parallel with the ground
plane (parallel with the axis of rotation) connect to the right vanishing point
(Figure 18.15).
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Figure 18.15 Connect lines to vanishing points to complete the box.

Left Axis

A left axis rotation follows the same procedure as a right axis rotation. There
is a new axis point: the left axis point (LAP). It is located on the left
reference line, 90° from the right and vertical vanishing points (Figure 18.16).
There are also new measuring points (Figure 18.17) and a new measuring
line, parallel with the line the measuring points are on (Figure 18.18).
Connect lines to vanishing points to complete the box (Figure 18.19).
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Figure 18.16 Use the left axis point to find the new vanishing points.
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Figure 18.17 To establish the measuring points, measure the distance from the
vanishing point to the left axis point. Project that distance to the line the

vanishing points are on.
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Figure 18.18 The measuring line must be parallel with the line the measuring
points are on, and the line being measured must be on the same plane as the
measuring line.
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Figure 18.19 Connect lines to vanishing points to complete the box.

Cartesian Coordinate System
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The Cartesian coordinate system is a graph that allows a point in space to be
accurately plotted. In three-dimensional Cartesian space this is accomplished
using three axes labeled x, y, and z. There are variations to these
designations, but traditionally x and y are placed on a horizontal plane, with
y representing width and x representing depth. Height is represented by z.
This is the right-handed Cartesian coordinate system, and it is the system
used in this book.

One-Point Angles

A one-point perspective box, seen in a three-point view, can tilt forward or
backward (rotate along the y-axis), or tilt to the left or right (rotate along the
x-axis) (Figure 18.20). These angles are approached differently than the
others encountered thus far so it is worthwhile to address each of them.
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Figure 18.20 Using the Cartesian coordinate system to define one-point perspective
angles.

X -Axis

The axis designated x rotates around a line connected to the vertical
reference point. The object tilts to the left or right along this axis—this
creates new vanishing points. To locate these new vanishing points, a point
of true angles for x is needed.



The point of true angles for x is located along the vertical reference line.
Measure the distance from the vertical vanishing point to the vertical station
point. Transfer that distance to the vertical reference line (Figure 18.21). This
is the point of true angles: the x-axis point (XAP).
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Figure 18.21 The 60° and 30° vanishing points are aligned horizontally with the
vertical vanishing point.

Any 90° angle drawn from the x-axis point will create two vanishing
points 90° apart. These vanishing points are aligned horizontally with the
vertical vanishing point (Eigure 18.22). Measuring points are also aligned
horizontally with the vertical vanishing point and are found by measuring
the distance from the vanishing point to the x-axis point (Figure 18.23).
Connect lines to vanishing points to complete the box (Figure 18.24).
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Figure 18.22 The perspective angles drawn from the two new vanishing points
reflect the true angles plotted at the x-axis point.
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Figure 18.23 Find measuring points by measuring the distance from the new
vertical vanishing points to the x-axis point. Then transfer it to the horizontal line.
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Figure 18.24 Connect lines to vanishing points to complete the box.

y-Axis



The final rotation is along a horizontal axis, the y coordinate. The box tips
forward or backward.

The point of true angles for the y-axis is the vertical station point (Figure
18.25, top).
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Figure 18.25 The vanishing and measuring points are placed on the vertical
reference line. True angles are found at the vertical station point.
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Figure 18.26 Since the measuring points are on a vertical line the measuring line
must also be vertical. This box is tilted 20° clockwise.

The vanishing points and measuring points are placed on the vertical
reference line (Figure 18.25, bottom).

Measure the height and depth using a measuring line that is parallel with
the vertical reference line (Figure 18.26, top).

Connect to vanishing points to complete the left side of the box (Figure
18.26, bottom). Complete the box using horizontal lines for the thickness
(Figure 18.27).
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Figure 18.27 Connect to the vanishing points to complete the box.
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Figure 18.28 The angle of sight is determined at the vertical station point.

Three-Point Diagrams



At this point, the focus will change to a previous topic: creating a three-point
diagram. Not generically, as before, but creating a diagram from a specific
viewpoint. This could not have been done earlier. To create a diagram from a
specific viewpoint, it is necessary to understand how axes points work.

Angle of Sight

First, consider the center of vision. In three-point perspective the viewer is
looking up or down, but at what angle? The horizon line is at the eye level,
and the vertical vanishing point is 90° from the horizon line. The center of
vision is somewhere between them. To place the center of vision at a specific
location, so that the viewer is looking at a precise angle, use the vertical
station point. There is 90° between the vertical vanishing point and the
vertical reference point, 90° between looking straight down and looking
straight ahead. If the viewer is looking at a specific angle, place that angle at
the vertical station point. For example, if the viewer is looking down 20°,
draw a 20° angle down from the vertical station point (Figure 18.28).

Angle of Object

The next step is to orient the angle of the object to the picture plane. The
vertical axis point works the same as the station point in two-point
perspective. The vertical axis point determines the object’s angle to the
picture plane. For example, if the object should be turned 60°/30° to the
picture plane, draw those angles at the vertical axis point (Figure 18.29,
right).
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Figure 18.29 The angle of the object to the picture plane is defined at the vertical
axis point.

First Steps

If a specific angle is desired for a three-point diagram, it is best to start with
the vertical station point (Figure 18.30). Work out the diagram from there,
establishing the center of vision, then using the vertical axis point to define
the angle of the object to the picture plane.
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Figure 18.30 This three-point diagram begins at the vertical station point. The
viewer is looking down at a 20° angle. The object being drawn is at a 50°/40° angle

to the picture plane.



Eye Level

The viewer’s eye level depends on the placement of the ground plane.

The horizontal measuring line is placed at the center of vision, which can
be—but is not necessarily—on the ground. The ground plane is determined
by the drawing. Decide where the ground is, then measure the distance from
the ground to the horizon line to determine the eye level (Figure 18.31).



LvP HL LMP RVP

A\
—

Eye level 8 units above ground

Elevation view

Horizon line

The horizon line is
3 units above the
CV | center of vision.

The ground plane is
5 units below the
center of vision.

AR

Ground plane

VVP

Figure 18.31 In this example, there are 5 units between the ground and the center
of vision. There are 3 units between the center of vision and the horizon line. The
eye level is 8 units above ground.
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Combining One- and Three-Point Perspective

Imagine the following scenario: a person is on a balcony looking down at a
photographer. The photographer is taking their picture. The scene below is in
three-point perspective—except for the camera. The camera is facing the
person on the balcony, so the camera is in one-point perspective. There are
endless scenarios where a one-point object can be envisioned in a three-
point scene. This chapter combines a three-point view with a one-point
object (Figure 19.1).
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Elevation view Perspective view

3Pt o
Not
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Figure 19.1 When combining a one-point object in a three-point view, the front of
the one-point box is parallel with the picture plane. In one-point perspective,
horizontal and vertical dimensions are parallel with the picture plane. In three-
point perspective, all dimensions are foreshortened.

One-Point Vanishing Point

Objects in one-point perspective have vertical and horizontal dimensions
parallel with the picture plane, and foreshortened lines connect to the center



of vision.

The Placement

To illustrate this, draw a one-point box, 2 units wide, 2 units high, and 4 units
deep. It is 1 unit to the right of the center of vision and 4 units behind the
picture plane. First, measure 1 unit to the right of the center of vision (Figure
19.2). Then, measure 4 units behind the picture plane (Figure 19.3). Make this
point the bottom left corner of the box.
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VvP

A view from behind the picture plane showing
1 unit to the right of the center of vision.



Figure 19.2 Measure 1 unit to the right of the center of vision.
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A view from behind the picture plane showing a
4 unit length.
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Figure 19.3 Measure 4 units behind the measuring line. An angle 90° to the

measuring line connects to the vertical reference point. A measuring point for the
vertical reference point is needed.

Width

The box is 2 units wide. Measure the width along the measuring line and

project the distance backward, using the vertical reference point (Figure
19.4).
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A view from behind the picture plane showing a
2 unit line projected 4 units behind the picture
plane.

VvP

Figure 19.4 Horizontal dimensions are parallel with the picture plane. Measure 2
units along the horizontal measuring line. Project the 2 units to the desired
location.

Superimposing Diagrams

Now the width and location of the one-point box has been established. All of
this was done using the three-point diagram. But to draw the one-point box,
and to measure its depth, requires a one-point diagram. A one-point
diagram needs to be superimposed on the three-point diagram. Combining a
one-point diagram and three-point diagram is not difficult, but there are,
however, two important rules to remember.



First, a person can only look in one place at any given time, so there can
be only one center of vision. The center of vision in the one-point diagram
must be in the same place as the center of vision in the three-point diagram.
Second, a person can be in only one place at a time, thus the distance from
the viewer to the picture plane must remain constant. The distance from the
center of vision to the station point must be the same in the one-point
diagram as it is in the three-point diagram. Keep these two important rules
in mind when superimposing multiple perspective diagrams (Figure 19.5).

LVP RVP

VP

Figure 19.5 A one-point diagram can be superimposed on a three-point diagram if
both diagrams use the same center of vision and the distance from the station
point to the picture plane remains constant.



Depth

Move the measuring line so that it is on the same plane as, and touching, the
line being measured. Measure the depth using one-point perspective
guidelines (Figure 19.6).

LvP VRL RVP

A view from behind the picture plane showing
the bottom of the one-point box.

VVP

Figure 19.6 Lines drawn to the center of vision are 90° from the picture plane (but
at an angle to the ground plane). Measure depth as measured in one-point
perspective. Proper placement of the measuring line is vital.

Height



Turn the measuring line vertically to measure height (Figure 19.7). The
height is parallel with the picture plane and is not foreshortened. Measuring
points are not required to measure height and width in one-point
perspective.
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Figure 19.7 Finish the box by rotating the horizontal measuring line 180° to
establish the height.

Rotating a One-Point Object



The one-point diagram can be rotated to any angle using the center of vision
as an axis point. The angles are true angles. For example, if the one-point
diagram is rotated 45° clockwise, the box being drawn will be rotated a true
45° clockwise (Figure 19.8). Remember, there can be only one center of
vision, and the distance from the station point to the picture plane remains

constant.
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Figure 19.8 The box can be rotated along the y-axis by rotating the diagram to the
desired angle.
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Combining Two- and Three-Point Perspective

In two-point perspective, the vertical lines are parallel with the picture plane
(Figure 20.1). The procedures to combine two-point and three-point
diagrams follow the same rules that apply to combining one-point and
three-point diagrams. For this example, draw a 3 unit cube. This cube is
located 2 units to the right of the center of vision and 4 units below the
measuring line (Eigure 20.2).

Elevation vew Perspective view
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Figure 20.1 A two-point object in a three-point view.
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A perspective view from behind the picture
plane showing 3 units to the right and 3 units
down.

Figure 20.2 The box is 2 units to the right and 4 units below the center of vision.

First, using the horizontal measuring line, measure 2 units to the right of
the center of vision. Then, using the vertical measuring line, measure 4 units
below the center of vision. This point represents the top, front corner of the

two-point box.



Superimposing Diagrams

The location of the two-point box was established using the three-point
diagram (all these dimensions are in three-point perspective). To draw the
two-point perspective box, a two-point perspective diagram is needed.
When superimposing the two-point diagram, remember that there is only
one center of vision (the two diagrams share the same center of vision), and
the distance from the viewer to the picture plane remains constant.

Use the two-point diagram’s station point to establish the left and right
vanishing points. For example, if the cube is at a 45° angle to the picture
plane, draw 45° angles from the station point (Eigure 20.3).



LVP RVP

VVP

Figure 20.3 A two-point diagram superimposed on a three-point diagram. The left
and right vanishing points are set up at 45°.

Measuring

Take care that the measuring line and the object being measured are on the
same plane. This can be challenging. In this example, the measuring line
must be moved down to the level of the box. Use the vertical vanishing



point to project the measuring line down 3 units, touching the line being
measured (Figure 20.4).
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Figure 20.4 Move the measuring line down 4 units, so that it is on the same plane
as the line being measured.

Once the measuring line is in place, follow two-point perspective
procedures to measure the width and depth (Eigure 20.5).
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A view from behind the picture plane showing a
3 unit square in two-point perspective. VVP

Elevation view

Figure 20.5 Measuring horizontal dimensions follows the same procedures as
outlined in two-point perspective.

Vertical dimensions are not foreshortened, so turn the measuring line 90°
to measure height (Figure 20.6).
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Figure 20.6 Height is parallel with the picture plane and not foreshortened. Turn
the measuring line vertically.

Complete the Box

Connect foreshortened lines to the right and left vanishing points to
complete the box (Figure 20.7).
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A perspective view from behind the picture
plane showing a 3 unit cube in two-point
perspective.

Figure 20.7 Connect lines to vanishing points to finish the box.

The diagram can be rotated to any angle using the center of vision as an axis
point (Figure 20.8).
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Figure 20.8 To rotate the object being drawn, rotate the two-point diagram.

Using these techniques, one-, two-, and three-point perspective can now
be combined in the same illustration (Eigure 20.9).
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Figure 20.9 Combining one, two, and three-point perspective.
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Combining Three-Point Perspective Diagrams

It may seem like every possible topic has been explored at this point. But,
there is more: superimposing multiple three-point diagrams (none of the
objects share vanishing points, and no angles are parallel with the picture
plane). To do this successfully, the two cardinal rules must be followed: there
is only one center of vision, and the distance between the viewer and the
picture plane must remain constant (Figure 21.1). In addition to the two
cardinal rules, all superimposed three-point diagrams must maintain the
angle relationships discussed in Chapter 17 (Figures 17.3-17.13).




Base diagram
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Figure 21.1 These superimposed diagrams share the same center of vision, and the
distance from the picture plane to the station point is consistent throughout.
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Compound Inclines in Two-Point Perspective

It is time to revisit the world of two-point perspective, where the viewer is
looking parallel with the ground plane, and the center of vision is located on
the horizon line. It is backtracking, but a good understanding of three-point
perspective is needed to solve this next problem. In the next example, the
box is tilted. Not tilted as drawn before, with one side parallel with the
ground plane, and one side connecting to a vanishing point on the horizon
line. This is a compound incline, a shape tilted so that no plane is parallel
with the ground, and no lines connect to vanishing points on the horizon
line. If this shape was touching the ground, it would do so at a corner.
Imagine a pair of dice bouncing along a table. When they stop moving, the
dice are in one- or two-point perspective. When moving, they are likely at
an incline. It can be a simple incline where one surface is parallel with the
ground plane, or a compound incline where no surface is parallel with the
ground plane.

The Compound Incline Box

For this example, draw a box. The back of the box is 30° above the ground
plane, and the box then rotates counterclockwise 30° (Figure 22.1). This is
best approached as a two-step process.



\ 30°

60°

Figure 22.1 No dimensions are parallel with the ground plane.

The Incline

The box is angled 30° from the ground plane. Follow the procedures outlined
in Chapter 10. After drawing the incline (Figure 22.2), the box rotates
counterclockwise 30°. The axis of rotation is aligned with the upper auxiliary
vanishing point (Figure 22.2, inset).
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Figure 22.2 First, using a right axis point, lift the box 30° from the ground plane.
Then, rotate the box 30° counterclockwise along an axis aligned to the upper
auxiliary vanishing point.



The Rotation

As the box rotates along this axis, the right and the lower auxiliary
vanishing points change position. This is where the three-point procedures
come into play. Create reference lines following the three-point perspective
guidelines. (The diagram is the same as a three-point diagram. The only
difference between the two diagrams is the labeling, see Figure 22.3.)



AUX. VP 9%

LVP RVP

RRP jr

Yo
Three-point labeling

AUX.VP &

Figure 22.3 Create three reference lines, each intersecting the center of vision, and
each being at a right angle to the lines connecting the three vanishing points. This



diagram is the same as a three-point diagram. The labels are different, but the
geometry is the same.

Axis Point

Since the right and vertical vanishing points change positions, the box
rotates along a left axis. Thus, a left axis point is needed. This point is a true
90° between the right and the lower auxiliary vanishing points. Place the left
axis point on the left reference line (Figure 22.4).
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Figure 22.4 Establish the left axis point along the left reference line.



Complete the Box

Create new right and left vanishing points, rotated 30° counterclockwise
(Figure 22.5). Plot corresponding measuring points (Eigure 22.6). Be sure the
measuring line is at the proper angle (Eigure 22.7). Measure the box (Eigure
22.8) and connect the corners to the vanishing points to complete the
drawing (Eigure 22.9). Review Chapter 19 for a detailed description of this
procedure.
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Figure 22.5 Plot two new vanishing points, keeping a 90° angle at the left axis
point.
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Figure 22.6 Plot measuring points for each of the new vanishing points.
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Figure 22.7 The measuring line must be parallel with the line the measuring points
are on. Place the measuring line at the corner of the box to ensure it is on the same
plane as the line being measured.
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Figure 22.8 Measure the lines connecting to the 30° and 60° vanishing points.
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Figure 22.9 Connect lines to vanishing points to complete the box. This box is
tilting up 30° from the ground plane, and rotating 30° counterclockwise.
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Shadows

There are two types of light sources: natural and artificial. In the world of
perspective, natural light emanates from the sun (including that which is
reflected by the moon). Any other light source is considered artificial. Fire
sources such as candles, and electrical sources such as light bulbs, are all
considered artificial.

Shadow Components

Natural Light Shadows

Shadows from natural light can be placed into three categories: positive
shadows, negative shadows, and parallel shadows. These categories are
based on whether the light source is in front, behind, or to the side of the
viewer.

Artificial Light

Shadows from artificial light sources are called converging shadows
(sometimes the terms concentric or radiating shadows are used when
discussing artificial light).

Ground Lines and Light Angles



Whether natural or artificial, all shadows are plotted using a ground line
(GL) and a light angle (LA). A light angle is the angle of the light ray to the
ground plane, and is used to determine the length of the shadow. The ground
line is a directional line parallel with the ground plane, and is used to
determine the angle of the shadow.

Shadow Rules

There are rules that describe the behavior of shadows. These rules may seem
abstract at first, but with practice they become intuitive.

Shadows on Horizontal Surfaces

Shadows on horizontal surfaces follow these rules:

Rule One. Shadows of vertical lines follow the ground line angle.

Rule Two. Shadows of horizontal lines are parallel with the lines casting
them.

Rule Three. Shadows of angled lines are found by plotting the line’s end
points.

Shadows on Vertical Surfaces

When a shadow falls on a vertical surface, these rules must be followed:

Rule Four. Vertical lines cast vertical shadows.

Rule Five. Shadows of horizontal lines are found by plotting the line’s end
points.

Rule Six. Shadows of angled lines are found by plotting the line’s end points.

Shadows on Angled Surfaces



On angled surfaces, there is one rule:

Rule Seven. Shadows on all angled surfaces are found by plotting the line’s
end points.

Parallel Shadows

Parallel shadows occur when the sun is directly to the right or left of the
viewer, 90° from the line of sight. Imagine an arc overhead, beginning at the
viewer’s left and ending 180° to the viewer’s right. If the sun is anywhere
along this arc, the light angle and the shadows (the ground line) have no
vanishing points, they are parallel with the picture plane (Figure 23.1). The
ground line is drawn horizontally, directly to the left or right of the object.

Line of sight

Plan view Light source 90° is from the line of sight

Figure 23.1 When the position of the sun is 90° from the line of sight, the shadows
are parallel with the picture plane.

If the sun is closer to the horizon line, the light angle is more oblique, and
the shadows are longer. The higher the sun, the steeper the light angle, and
the shorter the shadows. The light angle determines the length of the
shadow. The light angle—being parallel with the picture plane—is a true
angle. For example, if the sun is 45° above the horizon line, all light angles



are drawn at a true 45°. If the sun is directly overhead, all light angles are
true verticals.

Below are examples of parallel shadows, each following one of the rules
listed above.

Rule One

Shadows of vertical lines follow the ground line angle. When the light source
is 90° from the line of sight, the ground line is drawn parallel with the picture
plane, being a true horizontal line. If the light source is to the right, the
shadows are to the left. If the light source is to the left, the shadows are to
the right (Eigure 23.2).
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Figure 23.2 Rule One: shadows of vertical lines follow the ground line angle. They
are parallel with the horizon line.

Rule Two

The shadows of horizontal lines are parallel with the lines casting them. The
shadow, and the line casting the shadow, connect to the same vanishing
point. To plot the shadow of a horizontal line, first project a vertical line to
the ground. This creates a “flagpole.” Draw the shadow of the flagpole using
rule number one. After finding the end of the flagpole’s shadow, draw a line
to the vanishing point. The flagpole is used to find the location of the



shadow. The vanishing point is used to establish the angle of the shadow

(Figure 23.3).
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Shadows of horizontal lines
follow the direction of the VP

VP

Figure 23.3 Rule Two: shadows of horizontal lines, parallel with the ground,
connect to the same vanishing point as the line casting the shadow.

Rule Three

Shadows of angled lines are found by locating end points (finding the
beginning and end of the shadow) and then connecting the dots. Angled
lines can be difficult. They do not follow the ground line and they do not go
to any easily-found vanishing point. Again, use the flagpole technique and
rule number one to find the end points (Figures 23.4-23.5).
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Figure 23.4 Rule Three: plot the end points, and connect the dots to find the

shadow of angled lines.

Starting with the angled box, from each corner drop
flagpoles to the ground plane.

Next, plot LA and GL from the flagpoles.
Find the intersection on the ground.

Connect the dots to create the shadow.
Some corners may fall inside the shadow.




Figure 23.5 This example uses the flagpole technique to plot the shadow of a cuboid
angled to the ground plane.

Rule Four

Vertical lines cast vertical shadows. The pole and the wall are parallel, so the
shadow is parallel with the pole. A vertical line casting a shadow on a
vertical wall creates a vertical shadow (Figure 23.6).
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Figure 23.6 Rule Four: vertical lines cast vertical shadows on vertical surfaces. If
the pole and the wall are parallel, the pole and the shadow will also be parallel.
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plotting shadows of any
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Figure 23.7 The shadow cast from a horizontal line on a vertical surface is found by
plotting the end points.

Rule Five



A horizontal line casting a shadow on a vertical surface is a little more
challenging than the previous examples. The shadow is typically at an angle,
but not necessarily the same as the light angle. To plot this angle, find the
shadow of the end points, then connect the dots. Finding the end points can
be straightforward (Figure 23.7) or a little more difficult (Figure 23.8).
Sometimes these shadows fall across several surfaces. Finding the end points
in these situations can be very difficult indeed, as there are many possible
scenarios.

Begin by plotting the shadow of a horizontal line that falls across two
surfaces (a horizontal and a vertical surface). First, use rule number two to
find the horizontal shadow. Then locate the intersection of the horizontal
shadow and the vertical surface. Connect the end points (Figure 23.7).

If the shadow does not hit the vertical surface, then there is no intersection
at the wall. With no intersection, how is the second end point found? There
are two solutions to this problem: extend the wall to the shadow (Figure
23.8), or project the shadow to the wall (Figure 23.9).
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The shadow doesn't hit the wall to create an end point. Solution 1. Extend the wall so an intersection is created.

Figure 23.8 Solution 1. If the shadow does not intersect the box, the box can be
extended. Draw a phantom wall long enough to create an intersection.
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Intersection of the shadow
of the box and stick

Solution 2. Using the light angle, project the intersection of the stick and wall to
its source, creating an end point.

Figure 23.9 Solution 2. Draw the shadow of the box and pole. Find the intersection
of the two shadows. Using the light angle, project the intersection of the shadows
on the ground, to the side of the box, creating an end point.

Rule Six

Angled lines are found by plotting the end points. Draw flagpoles from the
end points, plot the shadow of the flagpoles, and connect the end points
(Figure 23.10).
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Figure 23.10 Rule Six: shadows of angled lines (this line is angled to both the
ground and the wall) are found by plotting, and then connecting, the end points.

Rule Seven

Plotting shadows on angled surfaces is no different than plotting shadows of
angled lines. Find, and then connect, the end points. Anything that is not
parallel or perpendicular to the ground plane will require plotting end
points. Whether it is the line casting the shadow, or the surface the shadow is
cast on, end points will need to be found (Figure 23.11).



This is an angled line casting a shadow on an incline. Project the ground line to the back
wall, as if the angled surface was not there, then follow the vertical, and connect the dots
to get the angle of the shadow on the surface of the prism.

Figure 23.11 Rule Seven: shadows on angled surfaces are found by plotting and
then connecting the end points.
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Shadows of Round, Spherical, and Curved
Objects

Shadows of round objects, or any curved object, are found by placing
flagpoles at various points along the curve (Figure 24.1), plotting shadows
for each flagpole (Eigure 24.2), then connecting the dots to create the shadow
(Figure 24.3). All curved lines, whether vertical, horizontal, or angled use the
same procedure. More challenging shapes are created when shadows fall
across multiple surfaces. Find and connect end points to resolve the shape

(Figure 24.4).
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Figure 24.1 Draw flagpoles from points along the curve, stopping at the ground
plane. The more flagpoles that are drawn, the more accurate the shadow will be.
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Figure 24.2 Plot the intersection of the light angle and the ground line. Plot as
many points as necessary to create an accurate shadow.
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Figure 24.3 Connect the dots from the intersection of the light angle and ground
line to create the shadow.



Step 1. Draw flagpoles. Use as many flagpoles

as necessary. The more flagpoles used, the
i 5 | more accurate the shadow shape will be. Five
flagpoles were used in this example.
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Step 2. Draw ground lines (1),
wrapping them around the slope.
This can be accomplished by creat-
ing a vertical wall (2). GL's will follow
the direction of the vertical wall. Find
the end points (3). Connect the dots (4).

Step 3. Repeat for each flagpole
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Step 4. Add light angles. Note where the light
angle intersects the ground line.

Final 5. Connect dots.

Figure 24.4 Plotting shadows that fall across multiple surfaces can be challenging.
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Figure 24.5 Plotting the shadow of a sphere is the same as plotting the shadow of
an ellipse.



Shadows of Spheres

It may be useful to review the chapter on drawing spheres, as it is helpful to
know how to draw a sphere before drawing its shadow. Because light angles
originate from a point at infinity when natural light is used, the core shadow
on a sphere is a great circle. Light angles touch the sphere at its widest
point (Figure 24.5, top). With artificial light, the core shadow becomes
progressively smaller as the light angle moves closer to the sphere. The
sphere’s core shadow is tangent to the intersection of the light angle and the
edge of the sphere.

The cast shadow of a sphere is plotted by drawing flagpoles along the core
shadow (Figure 24.5, middle left). Plot the shadow of each flagpole (Figure
24.5, middle right). Then connect the dots (Figure 24.5, bottom). Plotting the
shadow of a sphere is the same as plotting the shadow of an ellipse, as the
core shadow is elliptical.

Shadows on Spheres

The shadow of a straight line, cast on the surface of a sphere, is always
circular. It follows the shape of the sphere. Parallel light creates cast
shadows parallel with the picture plane. These shadows are a true half circle,
stopping at the core shadow (Figure 24.6). Shadows not parallel with the
picture plane strike the sphere at an angle and are elliptical.

One of the easiest ways to locate a cast shadow falling across a sphere is
to find the intersection of the cast shadow and the core shadow on the
ground plane (Figure 24.6, A). Then, using the light angle, project the
intersection back to the sphere (Figure 24.6, B).



Completed shadow.
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Figure 24.6 A cast shadow follows the shape of the sphere.

Shadows on Curved Surfaces

Plotting shadows that fall across curved surfaces requires the same creative
and analytical problem-solving skills. As with all curved forms, end points
are plotted and then connected. The more points that are plotted, the more
accurate the shadow. To find these points, it is often helpful to draw the
shadow first on a flat plane, then wrap the shadow around the curved
surface by finding intersections. This can require some clever maneuvering
(Figure 24.7).
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Figure 24.7 The shadow was first drawn on the floor then projected to the curved
surface.
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Positive Shadows

When the sun is in front of the viewer, objects are backlit and shadows are
angled forward, away from the horizon line. As the position of the sun
moves farther to the left or right, the shadows become more horizontal,
closer to the angle of the horizon line, and closer to being parallel. Positive
shadows appear when the light source is anywhere within 90° of the center
of vision (Figure 25.1).
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Figure 25.1 Positive light is from a natural light source in front of the viewer.



Positive Shadow Components

Ground Line Vanishing Point

The ground line is now foreshortened and has a vanishing point. The ground
line vanishing point (GLVP) is always placed on the horizon line (Eigures
25.2-25.3).

Light Angle Vanishing Point
The light angle vanishing point (LAVP) represents the light source. It is

aligned with and placed directly above the ground line vanishing point
(Figures 25.2-25.3).




Figure 25.2 Align the light angle vanishing point with the ground line vanishing
point.

LAVP LAVP LAVP

cv

Sp SP

Sun to the right of the center of vision Sun aligned with the center of vision Sun to the left of the center of vision

Figure 25.3 The ground line vanishing point can be located anywhere along the
horizon line.

Angle of Shadow

The location of the ground line vanishing point determines the angle of the
shadow. Approach the ground line vanishing point like any other vanishing
point. A shadow is nothing more than a horizontal line. Drawing a specific
ground line angle is the same as drawing any horizontal angle. For example,
if the sun is 30° to the right of the center of vision, make a 30° angle from the
station point to the horizon line. This ground line vanishing point will draw
shadows at a 30° angle to the line of sight, or 60° from horizontal (Figure
25.4).
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Figure 25.4 Create specific ground line angles by projecting the desired angle from
the station point. In this example, the sun is 30° to the right of the center of vision.
This creates shadows 60° from horizontal.

Angle of Light

The location of the light angle vanishing point determines the length of the
shadow. A light angle vanishing point closer to the horizon line produces a
longer shadow. A light angle vanishing point farther from the horizon line
produces a shorter shadow. To illustrate a specific time of day, the light angle
vanishing point must be properly positioned. Early morning or late evening
light requires an oblique light angle, while mid-afternoon suggests a steeper
light angle. Drawing a specific light angle is the same as drawing any incline.
The light angle vanishing point can be treated like any auxiliary vanishing
point. For example, if the sun is 45° above the horizon line, first make a
ground line measuring point (true angles for inclines are found at measuring
points). Then draw a 45° angle, intersecting a point directly above the ground
line vanishing point (Figure 25.5). Review Chapter 9 for more information
about inclines.



LAVP

Figure 25.5 To create a specific light angle, first plot a ground line measuring point
(GLMP). True angles drawn from the ground line measuring point create a light
angle vanishing point, which draws those same angles in perspective.
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Negative Shadows

Negative shadows appear when the sun is behind the viewer. Shadows are
angled backward, toward the horizon line (Figure 26.1).
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Figure 26.1 Negative shadows occur when the light source is behind the viewer.

Negative shadows create an interesting problem. Only things in front of
the viewer can be drawn. Points that are behind the viewer’s head can’t be
drawn on the paper (the exception being curvilinear perspective). So how
can the light source be represented when the light source is behind the



viewer? Using some creative thinking and an understanding of geometry—
mainly an understanding of geometry—can unlock this problem.

Negative shadows are caused by light rays coming over the viewer’s
shoulder. These rays are at a specific angle to the ground. Imagine the light
rays continuing underground, beyond the ground plane, continuing to
infinity, and leading to a vanishing point below the horizon line. This is the
light angle vanishing point. This vanishing point creates congruent angles to
the light source. In this scenario, the light angle vanishing point is not the
light source itself but a point below, which draws the same angle as the light
source (Figure 26.2).

Congruent angles

LAVP

HL

Figure 26.2 Negative shadows require the light angle vanishing point to be below
the horizon line, creating congruent angles to the light source located above and
behind the viewer.




Creating Negative Shadows

Angle of the Shadow

Use the station point to determine the angle of the shadow (this is the same
technique used when drawing positive shadows). Angles projected from the
station point create vanishing points that draw the same angle in perspective
(Figure 26.3).
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Figure 26.3 Ground line angles are found from the station point.

SP

Angle of the Light

The first step in creating a specific light angle is to create a ground line
measuring point (Eigure 26.4). Finding a specific light angle vanishing point
follows the same procedures as finding an auxiliary vanishing point. For
example, if the light source is to be 45° above the horizon, project that angle
from the ground line measuring point. Negative shadows require the light
angle vanishing point to be below the horizon line (Eigure 26.5).



GLMP cv GLVP

Figure 26.4 A ground line measuring point is needed to locate the light angle
vanishing point.
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Figure 26.5 Angles drawn from the ground line measuring point create a light
angle vanishing point that draws those same angles in perspective.
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Shadows from Artificial Light Sources

Natural light is from a source at such a distance that the shadows cast are
considered parallel. All lines drawn from the same point on the horizon line
are parallel in perspective. Thus, all shadows from a natural light source are
likewise parallel in perspective.

An artificial light source is much closer. The shadows are not parallel but
radiate around a point. The shadows become wider as they get farther away
from the light source. This type of light source is called converging light.

Components of Shadows Created From Artificial
Light

Ground Line Location

The ground line is located 90° from the light source. It is most frequently
placed on the surface the shadow is cast upon, typically the ground plane
(Figure 27.1). In contrast to natural light, artificial light can have multiple
ground line vanishing points. They can be on walls, floors, and ceilings
(Figures 28.2-28.5). Shadows at different heights (e.g., shadows on a floor
and shadows on a table) have ground line vanishing points at the same
height as the shadow (Figure 27.2).
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Figure 27.1 Converging shadows radiate around the ground line vanishing point.
The ground line vanishing point is always 90° from the light source.



Figure 27.2 The ground line vanishing point must be at the same level as the
surface the shadow is on.
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Figure 27.3 Ground line vanishing points can be on vertical surfaces.



Figure 27.4 Ground line vanishing points are located 90° from the light source and
on the same surface as the object casting the shadow.



GLVP1 and GLVP2 are used for the pole.
GLVP3 is used for the shelf.

Figure 27.5 Each ground line vanishing point is placed on the same plane as the
shadow.

Light Angle Location

The light angle vanishing point represents the light source. It can be
anywhere. However its position must be known, as the placement of the
ground line vanishing point depends on the light source’s location.
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Three-Point Shadows

All the previous shadow rules apply to three-point perspective. But, in three-
point perspective, due to the vertical lines being foreshortened, a more
complicated situation is created when faced with the task of locating the
light angle and ground line vanishing points. The following pages illustrate
how to apply natural and artificial light systems in three-point perspective.

Parallel Shadows, Bird’s-Eye View

Ground Line

As with one- and two-point perspective, when the sun is 90° from the
viewer’s line of sight, the ground line is parallel with the picture plane and
there is no ground line vanishing point.

Light Angle

Unlike one- and two-point perspective, the light angle is not parallel with
the picture plane. In three-point perspective, due to the picture plane being
foreshortened, the light angle has a vanishing point. If the sun is directly
overhead, light rays are vertical (90° to the ground plane). Since all vertical
lines connect to the vertical vanishing point, the vertical vanishing point
becomes the light angle vanishing point. If the sun is to the right or left, the
light angle vanishing point moves horizontally to the left or right of the
vertical vanishing point (Figures 28.1-28.2).



Location

To place the light source in a specific location, find the point of true angles
(this is the same procedure outlined in Figure 18.21). Measure the distance
from the vertical vanishing point to the vertical station point, then transfer
that distance to the vertical reference line, establishing the x-axis point
(Figure 28.3, top). From the x-axis point, project the desired angle, locating
the light angle vanishing point. For example, if the light source is to be at a
60° angle from the ground plane, project a true 60° angle from the point of
true angles (Figure 28.3, bottom).

The light angle vanishing point does not represent the light source, but it
does create angles congruent with the light source (review Chapter 26 on
Negative Shadows). If the light angle vanishing point is to the right of the
vertical vanishing point, the sun is to the viewer’s left. Conversely, if the
light angle vanishing point is to the left of the vertical vanishing point, the
sun is to the viewer’s right (Figure 28.1).
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Figure 28.1 When the light angle vanishing point is to the left of the vertical
vanishing point, the sun is above and to the right of the viewer.
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Parallel Shadows, Worm’s-eye view

A worm’s-eye view is approached the same as a bird’s-eye view, only
upside-down. The procedure is the same. However, in a worm’s-eye view,
the light angle vanishing point is above the horizon line, and does represent
the sun’s actual location (Figure 28.2).
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Figure 28.2 Unlike the bird’s-eye-view, in a worm’s-eye view the light angle
vanishing point represents the location of the sun.
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Figure 28.3 Use the x-axis point (the point of true angles) to establish a light source

at a specific angle.

Positive Shadows
The sun is in front of the viewer. Objects are backlit, and shadows angle

toward the viewer.



Ground Line

The ground line vanishing point is located on the horizon line, as it is for all
natural light situations.

Light Angle

The light angle vanishing point is directly above the ground line vanishing
point. In three-point perspective, all vertical lines connect to the vertical
vanishing point. Thus, the ground line vanishing point and the light angle
vanishing point align with the vertical vanishing point (Figures 28.4-28.5).
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LVP GLVP RVP

Figure 28.4 When drawing positive shadows in a bird’s-eye view, the light angle
vanishing point is above the horizon line, and aligned to the vertical vanishing
point.
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Figure 28.5 Positive shadows in a worm’s-eye view. The light angle vanishing point
and the ground line vanishing point connect to the vertical vanishing point.

Negative Shadows



Objects that are behind the station point can’t be drawn on the paper. When
the sun is behind the viewer, geometry must be used to find a point that
draws angles congruent with the sun (refer to Figure 26.2).

Ground Line

The ground line vanishing point is located at infinity and placed on the
horizon line.

Light Angle

The light angle vanishing point is placed below the horizon line, aligned with
the vertical vanishing point (Eigures 28.6-28.7).
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Figure 28.6 When drawing negative shadows in a bird’s-eye view, the light angle
vanishing point and the ground line vanishing point are aligned with the vertical



vanishing point.
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Figure 28.7 When drawing negative shadows in a worm’s-eye view, the light angle
vanishing point and the ground line vanishing point are aligned with the vertical
vanishing point.

Light Source Location

Placing the light source in a specific location requires a solid understanding
of three-point angles.

Ground Line

The ground line angle is established using the vertical axis point. For
example, to draw a shadow that is 50° from horizontal, draw a true 50° angle
at the vertical axis point. Then project that angle to the horizon line (Figure
28.8).

Light Angle

The light angle is a bit more complicated. It involves making a new
reference line and a new axis point. Use this procedure for both positive and
negative shadows (Figures 28.9-28.10).
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Figure 28.8 Use the vertical axis point to establish a specific ground line angle.
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Figure 28.9 Positioning the light angle vanishing point in a specific location
requires a new axis point.
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Figure 28.10 The finished shadow. The sun is 40° to the left and 30° above the
horizon line.

Converging Light in Three-Point Perspective

Artificial light in three-point perspective is approached in the same way as
one- or two-point perspective. The only difference is that vertical lines are
now foreshortened. Otherwise, the same rules apply (Figures 28.11-28.12).

GLVP is placed on the
ground plane, directly
below the light source.




LAVP

Figure 28.11 When drawing shadows from artificial light sources, the ground line
vanishing point is located 90° from the light angle vanishing point.
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Figure 28.12 Shadows on vertical surfaces have ground line vanishing points on
the same surface as the shadow.



29
Reflections

While shadows are on surfaces, reflections appear inside surfaces and appear
as a virtual object. Reflections are aligned with the real object, at a right
angle to the mirror’s surface. The distance from the virtual object to the
mirror is the same as the distance from the real object to the mirror. Various
methods can be used to plot reflections. The following pages outline a few of
the options.

One-Point Perspective

Vertical Mirror (reflections along the y-axis)

These reflections have no foreshortening. Measure the distance from the
object to the mirror and duplicate that distance inside the mirror. The height
of the object does not change (Figure 29.1).
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Figure 29.1 Horizontal reflections are not foreshortened.

Horizontal Mirror (reflections along the x-axis)

Likewise, reflections in a horizontal mirror have no foreshortening. Simply
duplicate the object in the reflective surface. If there is distance between the
object and the reflective surface that distance must also be duplicated (Figure

29.2).
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Figure 29.2 Vertical reflections are not foreshortened.

Vertical Mirror (reflections along the z-axis)

In this scenario, the distance from the object to the mirror is foreshortened.
There are several ways to find a foreshortened distance. A measuring point
can be used (Figure 29.3), or a reference point (Figure 29.4). A third method
involves using geometry to create two lines of equal length (Figure 29.5).
See Figure 36.3 (top) for step-by-step instructions for this procedure.
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Figure 29.3 The distance between the object and mirror is foreshortened. Use a
measuring point to reflect the distance.
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Figure 29.4 A reference point can be used to move parallel lines backward and
forward in space.
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Figure 29.5 Using geometry to plot the distance of the reflection.
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Figure 29.6 Use horizontal angles, plotted from the station point, to draw
reflections angled to the mirror.



Two-Point Perspective

Reflections in vertical surfaces are foreshortened. Reflections in horizontal
surfaces are not. The same procedures used to plot one-point reflections
apply to two-point.

Reflective Angles

All the objects being reflected thus far have been parallel with or
perpendicular to the reflective surface. If the object is angled to the mirror,
the reflection is at that same angle. First calculate the angle of the object to
the mirror. Then plot that same angle on the opposing side of the reflective
surface (Figure 29.6). Reviewing the information on horizontal angles
(Chapter 7) may be helpful.
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Reflections on Inclined Surfaces

There are many ways to plot reflections in an inclined mirror—any of the
previous methods can be used. But, understanding how angles work in
perspective is the hallmark of becoming a proficient practitioner. So, in the
following example, this reflection will be drawn using angles.

In this scenario, the mirror is at a 30° angle to the ground plane (Figure
30.1). First, calculate the angle of the object to the mirror (Figure 30.2). Then,
duplicate that angle inside the mirror (Figures 30.3-30.4). To establish the
length of the reflection, draw a 90° angle to the mirror’s surface (Figure 30.5).

The reflection of a single line can be complicated. A three-dimensional
object is even more so (Figure 30.6).
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Figure 30.1 The mirror is 30° to the ground plane.
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Figure 30.2 The angle of the object to the mirror is 60°.
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Figure 30.3 If the angle of the object to the mirror is 60° then the angle of the
reflection to the mirror is also 60°.
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Figure 30.4 Project a 60° angle from the mirror’s surface (from the lower auxiliary
vanishing point) to establish the reflection vanishing point.
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Figure 30.5 Measure the reflection’s length by drawing a line from the top and
bottom of the object to a point 90° from the mirror’s surface (the upper auxiliary
vanishing point).
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Figure 30.6 This reflection was created using the methods outlined in the previous
illustrations.
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Reflections on Curved Surfaces

Reflections on curved surfaces are rarely discussed. The subject is usually
ignored, or the advice is to “just fake it” This can be troublesome, so this
subject will be explored further. But before looking at reflections on curved
surfaces, reflections on flat planes will be reviewed.

Reflections are seen when light waves bounce off shiny surfaces. The
wave’s angle is key to the perceived position of the reflected image.
Reflections appear to be inside the mirror. There is, of course, no object
inside the mirror. So why is an object seen where none exists?

First, consider the science behind reflections. An angle 90° from a
reflective surface is called “normal” Light rays hit reflective surfaces at
specific angles to normal. This angle is called the incidence angle. The
reflective light angle is always the same to normal as the angle of incidence
(Figure 31.1). To put it simply: light bounces off a surface at the same angle it
hits the surface. This is the law of reflection.

So, light is bouncing off the surface, but light is seen as a straight line.
Because of this, two images are seen: the real object, and a virtual object (the
reflection). The reflection is seen aligned with the reflection angle. In flat
mirrors, reflections appear to be inside the mirror. The reflection appears at
the same distance from the reflective surface as the real object (Figure 31.1).
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Figure 31.1 The law of reflection states that the incidence angle to normal equals
the reflection angle to normal.

Convex Surfaces

The law of reflection works the same with curved surfaces. But, the position
of the reflection is different than those on flat surfaces. The reflection’s
position changes with the position of the viewer. The distance from the real
image to the mirror can’t be measured and duplicated. This makes plotting a
reflection much more difficult (Figure 31.2). To complicate matters, a
cylinder reflects beyond 180°. Depending on the angle of incidence, objects
behind the cylinder may be reflected (these reflections are thin slivers seen
at the edge of the cylinder).
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Figure 31.2 The reflection’s position inside the convex mirror changes with the
viewer’s location.

To draw reflections on a cylinder, the incidence angle to normal needs to
be plotted for each object. Although this is possible, it is impractical. While it
may be attempted for “fun,” it will also take a long time. Only a few points
need to be plotted to understand how these reflections work (Figures 31.3—
31.4). Likewise, only a few points need to be plotted to appreciate how time-
consuming this exercise is.
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Figure 31.3 To draw a reflection on a cylinder, the angles of incidence and
reflection must be plotted, which are at an incline as they travel to the viewer’s
eye. This is a difficult and impractical task. The bottom drawing is not designed as



an instructional guideline, but only to illustrate what is needed to plot a single dot
on a reflective cylinder.

So, if it is not practical to plot reflections on curved surfaces, how are they
approached? First, develop a solid understanding of the geometry.
Understand the relationship between the viewer, the incidence angle, and the
virtual image. Knowledge is the best tool. In addition, have at hand a
collection of curved reflective objects. Metallic paper can be purchased at
most art stores, and bent into many different shapes. Seeing the actual
reflections brings the science to life. With an understanding of the science,
and a collection of reflective objects to refer to, intelligent and convincing
reflection estimations can be made.
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Figure 31.4 It was a great deal of work to draw this single reflection. Reflecting an
entire environment in a curved surface is an unreasonably difficult task.

Concave Surfaces



There is a subject even more difficult than convex surfaces: concave surfaces.
Fortunately, reflective concave surfaces are not common; they will be briefly
addressed nonetheless. To fully cover the complexity of this topic would
require more space than is available, so here is an overview.

Concave surfaces have a center point (the center of the reflective surface’s
arc) and a focus point (a point halfway between the center point and the
mirror) (Figure 31.5, upper left). While the rule governing the angle of
incidence and angle of reflection to normal still applies, the angle of
reflection always passes through the focus point (Figure 31.5, upper right).

Four examples of reflections on concave surfaces are presented. The
reflections are quite different depending on the position of the object being
reflected. Sometimes the reflection is reversed; sometimes it is upright.

Reflections of objects between the viewer and the center point appear
smaller, reversed, and in front of the mirror (Figure 31.5).

Reflections of objects between the focus point and center point appear
larger, reversed, and in front of the real object (Figure 31.6, top).

Objects at the focus point disappear—in theory. In reality, the reflection
looks like a blurred streak across the mirror surface (Figure 31.6, middle).

Objects between the focus point and the mirror are larger and not
reversed, and appear behind the mirror (Figure 31.6, bottom).

The usual advice for drawing reflections on curved surfaces is to “just fake
it” But if this is not understood, then the results will be far from convincing.
This is not to say that plotting reflections on curved surfaces is advocated; it
is extremely difficult and time-consuming. The previous information was
designed to give a basic understanding of the underlying science so that it
can be faked with confidence. Approximations should be based on educated
estimations, not on random guesses.

Again, it is helpful to purchase a piece of reflective paper. This paper can
be manipulated to create a variety of curved shapes, which can be a valuable
reference tool.
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Figure 31.5 Plotting reflections on concave surfaces is difficult and prohibitively
time-consuming to have a practical application.
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Figure 31.6 Reflections in convex mirrors change dramatically depending on the
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Sphere

Plotting reflections on a sphere requires the same tedious process. The rules
of reflection still apply. Reflections on curved surfaces can be plotted by
hand—but it is not recommended (Figure 31.7). Like convex and concave
surfaces, the process is prohibitively time-consuming. Due to the exhausting
task, most art books simply ignore the topic. While it is not practical to plot
reflections on curved surfaces, it is empowering to have the knowledge—just
knowing may be enough. To create more convincing reflections, it is best to
find a reflective sphere to use as reference. Using a reflective curved surface
as a guide, along with an understanding of the science behind reflections,
will help you to create convincing images.
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Figure 31.7 Sphere reflections are challenging, to say the least.
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Anamorphic Perspective

Anamorphic images came about early in the development of perspective.
Artists such as Piero della Francesca and Leonardo da Vinci experimented
with solutions to correct the distortion caused when looking obliquely at
church frescos. As the congregation looked up at the frescos, the nearby feet
looked exceptionally large compared to the distant heads (Figure 2.4). A
solution to this problem was quickly formulated. The desired image was
projected on the wall using a grid. This projected image corrected the
distortion. Anamorphosis is the process of projecting a flat image on an
oblique surface. Looking at this projected image from an angle other than
the one it was projected from results in a distorted drawing—often to the
point of non-recognition. But the image comes into focus when seen from
the location it was projected from. Street artists use this technique with
amusing effects in sidewalk chalk festivals.

Beyond its practical use, anamorphosis is sometimes used as an
entertaining trick. An artist creates a mysterious skewed image; the viewer
must then find the vantage point that reveals the picture (Figures 32.1-32.2).

What the image looks like.

What the viewer sees.

/)




Figure 32.1 The anamorphic image comes into focus when seen from the proper
point of view.

Plan view
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Elevation view sp

i Project horizontal lines
' to a horizontal plane

Project vertical lines to a horizontal plane

Plan view

%

Draw a grid and use it as a guide to plot the anamorphic image.
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First draw the image on the grid. Then transfer the image to the anamorphic grid.

Figure 32.2 Plotting an anamorphic grid.

Foreshortened Image

On a related subject, this technology can be used to depict a flat image on a
foreshortened surface. For example, if drawing a picture hanging on a wall,



with this picture being foreshortened, this same procedure could be used in
reverse. Instead of the final image being stretched, it is compressed. First, put
a grid on the picture being drawn, and then draw that same grid in
perspective. Use the grid as a guide to plot points (Figure 32.3).
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Figure 32.3 To draw a foreshortened image, draw a foreshortened grid. Be sure to
adjust the thickness of the lines: they are foreshortened as well.




33
Four-Point Perspective

Objects not aligned with the center of vision become distorted. The farther
they are from the center of vision the more distorted they become.
Distortion occurs when the visual pyramid intersects the picture plane at an
oblique angle. The more aslant the angle, the greater the distortion. But what
if the picture plane is not flat? What if the picture plane is curved? The
picture plane, after all, does not need to be flat. If the picture plane is
cylindrical, the intersection of the visual pyramid will be at a right angle. The
viewer’s eye is at the center of the cylinder. Any line connecting to the
station point will intersect the picture plane at a 90° angle to its surface. If the
cylinder fully surrounds the viewer, a 360° panoramic view can be drawn
without the extreme distortion caused by a flat picture plane.

Using a curved picture plane still creates distortion, it is just a different
kind of distortion. With a curved picture plane, horizontal lines appear
curved in the final drawing. Vertical lines, however, are parallel with the
picture plane and are drawn as straight lines.

The picture plane, being circular, gives a 360° image area horizontally. But,
because the walls are flat, the standard 60° cone of vision still applies to the
vertical axis (Figure 33.1).
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Figure 33.1 The picture plane is cylindrical in four-point perspective.

Four-Point Perspective Components

Vanishing Points

There are four vanishing points, each 90° apart. One at the center of vision,
one 90° to the right, one 90° to the left, and one directly behind the viewer.

To illustrate how these vanishing points function, draw a symmetrical
room with the viewer placed in the center. A vanishing point is centered on
each wall (Figure 33.2).
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Figure 33.2 A plan view showing the viewer, the picture plane, the room, and the
four vanishing points.

Image Area

The picture plane is cylindrical, but the drawing surface is two-dimensional.
So, the first step is to flatten the picture plane. The image area will be 360°
long and 60° high.

Length

To calculate the length, the circumference of the picture plane must be
known. This is a simple formula: multiply the diameter by pi (7). To do this,
measure the distance from the station point to the picture plane (the radius).
Multiply the radius by two (the diameter). Then multiply the diameter by
3.14 (pi). The circumference of the picture plane is the length of the
panorama (Figure 33.3).

Height

The height of the panorama remains 60° from the station point. Use the
Pythagorean theorem to find the height. Or, draw an elevation view (to
scale), with a 60° cone of vision, and measure the height with a ruler (Figure
33.3, top right).
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Radius=1 unit

1.15

Diameter (2 units) x 3.14= 6.28 units
Circumference 6.28

Image area 1.15

6.28

Figure 33.3 Calculating the length and height of the panorama.

The Drawing

The viewer is in the center of a square room. This means the walls are
equally spaced and the drawing can be divided into four even quadrants.
Each quadrant represents the width on the wall. Then, place a vanishing
point in the center of each wall (Figure 33.4).
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Figure 33.4 Divide into quadrants to find the four walls. Use a ruler, or draw an X
to divide by half. Add vanishing points centered in each wall.



Horizontal Lines

Imagine a horizontal line of infinite length, at a right angle to the line of
sight. This line would disappear at the vanishing points that are 90° to the
right and left of the center of vision. If this line was on the ground, and it
was traced on the picture plane, it would curve up to connect with the
vanishing points (Figure 33.5). Lines above the eye level would curve down.
These curves are not simple compass arcs—that would be too easy.

Figure 33.5 An infinite horizontal line traced on a cylindrical picture plane creates

sinusoid.



To plot this curve, the viewer’s eye level must be known (2 units above
the ground), as well as how far the viewer is from the picture plane (1 unit)
(Figure 33.6).

This line connects to the right and left vanishing points, and touches the
picture plane at the ground level. This gives three known points (Eigure
33.6).
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These are vanishing points for horizontal lines at right angles to the line of sight.

Touch-point
They are 180° apart.

The touch-point of a horizontal line Plan view

/ at the picture plane.
& Ground

()
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Figure 33.6 The first three points of the sinusoid are the “easy” ones to locate.

These three points can be connected to draw an arc, but three points are
not enough to draw an accurate shape. At least two more points are needed.
Place these additional two points 45° on each side of the center of vision.

Since the room is square, they will be aligned with the room’s corner (Eigure
33.7).
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Figure 33.7 Because the room is a square, the corners are 45° from the station point.

The points that are needed indicate the distance from the line being drawn
to the picture plane. This distance must be plotted. This can be accomplished



using the Pythagorean theorem, but there is also a longhand method that
does not require any math. Draw a plan view to scale, and with a ruler,
measure the distance from the station point to the picture plane and the line
being drawn (Eigure 33.8, top left). Transfer those dimensions to an elevation
view drawn to the same scale, then measure the distance along the picture
plane (Figure 33.8, top right). Transfer that distance to the drawing (Eigure
33.8, bottom). Now there are five points available to plot the curve. Connect
the points to draw an arc. It is not a compass arc, but a sinusoid (Figure 33.8,
bottom).
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Figure 33.8 To plot an accurate curve, two additional points are needed.

Copy and repeat the curves, connecting each to vanishing points. The
intersection of the lines creates a 90° corner (Figure 33.9).
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Figure 33.9 Copy and repeat the lines, creating four orthogonal lines of infinite
length.

Copy and repeat the curves again, but this time connect each line to a
point halfway between the four vanishing points. These lines are at a 45°
angle (Figure 33.10). These 45° angles will later assist in drawing the grid.
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Figure 33.10 Plot a 45° angle using the procedure outlined in Figure 35.8.



Create an additional sinusoid behind the first, using the same procedure
(Figure 33.11).
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Figure 33.11 Repeat the process to plot an additional horizontal line.

Copy and repeat the sinusoids to create a series of squares (Figure 33.12).
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Figure 33.12 Copy and repeat the curves to make a grid.

Continue to copy and repeat until the four-point perspective grid is
complete (Figure 33.13).
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Figure 33.13 Continue to copy and repeat the curves, finding intersections to
create a grid.

Much of the grid that has been drawn is outside the cone of vision, outside
of the 60° vertical limit. That part of the grid is distorted beyond what is

acceptable and needs to be cropped (Figure 33.14).
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Figure 33.14 The ceiling is a mirror image of the floor.



Creating a true four-point grid is not an easy task. To expedite the job,
many illustrators use a simple arc in place of the sinusoid, “eyeballing” the
shapes. This is far from accurate, but it does save a great deal of time.

Vertical Lines

Vertical lines are parallel with the picture plane and are drawn as true
verticals (Figure 33.15). Measure vertical lines as measured in one- or two-
point perspective. Measure up from the picture plane and project the height
to the desired location (Figure 33.16).
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Figure 33.15 Crop the image and draw vertical lines on the walls where horizontal
lines intersect.




Figure 33.16 The eye level is 2 units above the ground. Divide the center line into
four even segments, creating a horizontal grid.

Finalize the grid by connecting lines to vanishing points (Figures 33.17-
33.18).

Figure 33.17 The completed grid.

As complicated as this diagram is, it is simpler than a diagram where the
viewer is not in the center of the room and the room is not a square. In this
scenario, the image can’t be divided into four even spaces. The length of
each wall must be plotted separately.

Length

In this example, the room is rectangular. To plot the length of each wall, start
with a plan view. Project the length of each wall to the station point,
intersecting the picture plane (Figure 33.18). The picture plane is cylindrical
so approach width in terms of degrees.

The length of each wall is represented on the picture plane as an arc, a
section of a circle. To find the length of each wall, the length of each arc
must be calculated (Figure 33.19). This next step requires a little math. The
formula to measure the length of an arc is 2tR(C/360) where:

C is the central angle of the arc in degrees;
R is the radius of the arc; and
T is 3.14.

There are several websites that offer calculators to solve this problem
(search for “arc length circle calculator”).
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Figure 33.18 Project the width of each wall to the picture plane.

Unlike the previous drawing, the vanishing points are not centered within
each wall. They are still 90° apart and plotted using the same methods as
Figure 33.4. The grid for this asymmetrical room was drawn using the same

perspective.

method as the previous symmetrical room (Figure 33.20). Using this method,
any environment can be accurately created and measured in four-point
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Figure 33.19 Plot the walls and vanishing point locations.
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Figure 33.20 This grid was drawn by the same process used in Figures 33.6—-33.18.

The left wall is touching the picture plane and the front wall is the farthest from
the viewer.

It should be noted that a 360° image is so foreign to the viewer’s eyes that
it is difficult for the brain to process. To create a more pleasing and

comprehendible picture, it is worth cropping the image area, keeping the
view within 180° (Figure 33.21).
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Figure 33.21 This is a four-point perspective view, cropped a little beyond 90° (the
two vanishing points are 90° apart).

Vertical Four-Point

A four-point diagram turned sideways creates a vertical panorama. It
combines a bird’s-eye view with a worm’s-eye view. The view includes
what is below, in front, and above. This includes the floor, the wall facing the
viewer, and the ceiling above them. Vertical lines extend to vertical
vanishing points: one at zenith, and one at nadir. Horizontally, however, the
field of vision remains at 60° (Eigure 33.22).
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Figure 33.22 A vertical four-point perspective view cropped at 180°.
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Five-Point Perspective

Five-point perspective is a fisheye view, displaying everything from east to
west and from north to south. Everything in front of the viewer is depicted.
The picture plane is a hemisphere. Horizontal, vertical, and angled lines
projected on a hemisphere behave differently than when projected on a
cylinder. Before drawing a five-point image, how these lines appear when
projected on a sphere must be understood.

Five-Point Perspective Components

Horizontal Lines (y-Axis)

A horizontal line of infinite length would connect to vanishing points on the
horizon line: one at the extreme left and the other at the extreme right of the
sphere. The horizon line, being at the viewer’s eye level, is drawn as a
straight line. Horizontal lines not aligned with the eye level are curved. The
curve is a great circle (Figure 34.1).



Figure 34.1 Horizontal lines projected on a hemisphere connect to vanishing points
on horizon line 90° from the center of vision.

Horizontal Lines (x-Axis)

Horizontal lines parallel with the line of sight are drawn as a great circle,
with one vanishing point at the center of vision and the other directly behind
the viewer (Eigure 34.2).

Figure 34.2 Horizontal lines projected on a hemisphere are half a great circle, one
vanishing point being the center of vision, the other behind the viewer (not



shown).

Vertical Lines (z-Axis)

Vertical lines are drawn as a great circle and have vanishing points at zenith
and nadir (Figure 34.3).

Figure 34.3 Vertical lines projected on a hemisphere are a great circle, with
vanishing points at the top and bottom of the picture plane.

Angled Lines

Angled lines have vanishing points at an angle corresponding to the line
being drawn. They are also drawn as a great circle (Figure 34.4).
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Figure 34.4 The vanishing points for angled lines are at the same angle as the line
being drawn, with vanishing points 180° apart.

Flattening A Sphere

Now that the theory of how lines appear when projected on a hemisphere is
understood, how are they drawn on a flat surface? The paper has only two
dimensions; the hemisphere has three. So, before these lines can be plotted
on the paper, the hemisphere must first be flattened. Flattening a round
surface is a problem that has plagued cartographers for thousands of years. It
is a problem that still exists today; it is a problem that cannot be solved.
Flattening a spherical surface, without distortion, is impossible. If a ball was
cut in half, and then flattened, the only way to accomplish this task would be
to tear, stretch, or fold the ball. No matter the approach, the shape of the ball
will suffer. A cone or cylinder can be flattened without tearing, folding, or
stretching. This is called a developable surface. A sphere is not a developable
surface. Any flat representation of a sphere will, by its nature, be distorted.
Over the centuries, cartographers and mathematicians have found a
variety of ways to limit this distortion. There are well over fifty methods to
project a curved surface on a flat plane. The methods developed often
diminish distortion in one aspect, while increasing it in others. Each method



leads to different results. Depending on the application, one method is often
more advantageous than another.

The best method for drawing purposes is an azimuthal projection. There
are many different azimuthal projections; among them are gnomonic,
orthographic, stereographic, and equidistant.

Gnomonic Projection

The gnomonic projection is one of the oldest, dating to the sixth century BC.
While the center of the image has little distortion, the edges of the sphere
are greatly stretched. Additionally, this method cannot display a true 180°.
The outside edge of the sphere is at infinity (Figure 34.5).
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Figure 34.5 Gnomonic projection.

Orthographic Projection



An orthographic projection puts the station point at infinity. As with
gnomonic projection, the orthographic projection is more accurate toward
the center of the sphere. But while the gnomonic projection stretches the
edges of the sphere, the orthographic projection compresses them. An
orthographic projection is like a photograph of the earth from space. The
land and water masses are foreshortened as the surface of the sphere recedes
and becomes more oblique to the viewer (Figure 34.6).
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Figure 34.6 Orthographic projection.

Stereographic Projection

The stereographic projection places the station point at the far edge of the
sphere. The image is still distorted; the projected circumference of the sphere
is much too large. But this is closer to the desired result (Figure 34.7).
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Figure 34.7 Stereographic projection.

Azimuthal Equidistant

The azimuthal equidistant projection preserves the circumference of the
sphere. In addition, all lines from the center point are straight and have
correct angles. There is still noteworthy distortion, as the diameter of the
sphere is considerably smaller than the diameter of the projection. For
drawing purposes, however, this is the best projection possible (Figure 34.8).
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Figure 34.8 Azimuthal equidistant projection.

Five-Point Grid

After examining how lines of various orientations look when plotted on a
hemisphere, and discussing the best sphere projection possible, combine this
information to plot a five-point perspective grid.



Figure 34.9 Evenly spaced horizontal lines projected to the hemisphere, then
connected to the center of vision.

Horizontal Lines (x-Axis)

Lines parallel with the viewer’s line of sight, lines along the x-axis, appear as
true straight lines receding to the center of vision. To create a series of
evenly spaced lines receding in space, first draw a horizontal line along the
ground plane, divide the line into even spaces, then project each increment
to the center of vision (Figure 34.9).

Lines on the z- and y-Axis

Vertical and horizontal lines on these axes are curved. They are a great circle
when drawn on the picture plane, but not quite a great circle on the
drawing. There is some distortion due to the equidistant projection method.
Considering this image is not a developable surface—and, therefore, can
never be truly accurate—it saves a great deal of time and effort simply to use
a compass arc. The shape of a compass arc is very close to the distorted arch.



Placement of Vertical Lines (z-Axis)

Think in terms of degrees when placing vertical lines in specific locations.
There are 180° between the left and right vanishing points. Measure angles in
degrees, along the horizon line. For example, if using a line 45° to the right,
place a dot centered between the right vanishing point and the center of
vision (Figure 34.10, left). Vertical lines are drawn with a compass,
connecting to the vanishing points at zenith and nadir (Figure 34.10, right).
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Figure 34.10 A vertical line 45° to the right of the center of vision.

Placement of Horizontal Lines (y-Axis)

Horizontal lines are approached in the same way as vertical lines. Measure in
degrees, above or below the horizon line, to determine their placement. Use
a compass to connect to the left and right vanishing points (Figure 34.11).



Elevation view

180°

Figure 34.11 Placement of horizontal lines are determined in degrees. The drawing
above illustrates a horizontal line 30° above the horizon, and a horizontal line 60°

below the horizon.

Create the Grid

Use a 45° vanishing point to create a series of squares (Figure 34.12). Repeat
the process to create a grid (Eigure 34.13).



Figure 34.12 Create a series of squares using the 45° vanishing point.
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Figure 34.13 Repeat the process to complete the grid.
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Figure 34.14 A five-point grid turned 60°/30°.

Angled Grid

In the previous five-point example, the room’s front wall was oriented
perpendicular to the line of sight (equivalent to a one-point perspective
view). This room can be drawn at any angle by relocating the vanishing
points along the horizon line, but the vanishing points must remain 90° apart.
For example, to create a grid that is angled 60°/30° to the viewer, place a
point 60° from the far left vanishing point, and another point 30° from the far
right vanishing point (Figure 34.14, top left).

To measure squares, it is helpful to draw 45° angles in perspective. These
angles are found from points placed on the horizon line, 45° from the
vanishing points (Figure 34.14, top right).

Create a vertical grid by using vertical measuring points (Eigure 34.14,
bottom left).
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Six-Point Perspective

Five-point perspective displays 180° of information, but it is only half of the
viewer’s environment. Six-point perspective adds the other half. A six-point
diagram is a full 360° view—everything surrounding the viewer is displayed.

The picture plane is a sphere, cut in half, and opened to show both ends.
The viewer sees the two halves. One half displays what is in front of the
viewer, and the other what is behind. The two halves can be displayed
stacked or side by side. There are six vanishing points, one in front of the
viewer and one behind, one above the viewer and one below, one to the left
of the viewer and one to the right. The two halves share top, bottom, left,
and right vanishing points (Eigure 35.1).

Creating a six-point grid is the same as creating a five-point grid, except it
is done twice.
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Figure 35.1 Six-point perspective.
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Miscellaneous

Dividing Lengths

Dividing a length into a given number of spaces can be done with a ruler
and a little math. A better method involves using a ruler and a triangle. It is
accurate, and no calculator is needed (Figure 36.1). This technique only
works on lines parallel with the picture plane. It does not work on lines that

fast,

are foreshortened. It is an excellent tool to plot evenly spaced segments.

Another technique (that does work with foreshortened lines) uses a
variety of methods to divide squares or rectangles into even segments. There
several methods, and each result in a different number of divisions

are

(Figure 36.2).

Step 1. Start with a length to be divided.

Use a ruler and triangle

to create parallel lines

Paralle

P

Step 5. At each segment extend parallel lines. 3 . g 3

This method can also be used to divide a line into proportional segments.



Figure 36.1 Dividing a length into evenly spaced increments.
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Figure 36.2 Dividing a rectangle or square into evenly spaced increments.
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Using the 1:1 technique shown in Figure
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38.3 to create evenly spaced posts. This is
a fast way to create even spacing
between objects.
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Figure 36.4 An auxiliary vanishing point is a useful tool to create evenly spaced

divisions.



Multiplying Lines

If an existing line needs to be made longer by a given percentage, there are
a few methods that will assist in this endeavor (Figure 36.3).

Using an auxiliary vanishing point is an alternative method to create
evenly spaced segments (Figure 36.4).

Intersecting Forms

The shape created by two intersecting forms can be complex. Dozens of
examples can be presented, each looking quite different, but each solved
using the same basic method—cross-sections. Cross-sections can be used to
find the intersection of one form with another. For example, a dormer is the
intersection of one prism with another. To find this intersection, draw two
cross-sections. First bisect the roofline at the ridge (Figure 36.5, top left).
Then draw another cross-section, at a right angle to the first, along the
centerline of the dormer (Figure 36.5, top right). The junction of the dormer’s
ridgeline to the building’s roofline is the intersection of the two shapes
(Figure 36.5, bottom left).

Drawing the intersection of two curved shapes (or, for that matter, any
two shapes) uses the same method. Drawing more cross-sections creates
more intersections, and a more accurate shape (Figure 36.6).
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Figure 36.6 Using cross-sections to draw curved intersecting forms.

Dividing A Circle



Dividing a circle into even segments has many applications (revolving doors,
spiral staircases, spoked wheels, etc.).

Decide on the number of segments needed, and divide that number by
360. For example, if dividing a circle into twelve even segments, each will be
30° (360 + 12 = 30). Transfer the segments from a plan view to a perspective
view (Figure 36.7).

Step 1. Divide the circle into even segments.

30°

Step 2. Create an Step 4. Connect the
ellipse the same pqints through the-
diameter as the circle ellipse center creating
above. 12 evenly spaced 30°

segments in perspec-

. tive.
Y. ¥ ¥

Step 3.Transfer the 30° segments to the ellipse.

Figure 36.7 Transfer evenly spaced segments from a plan view to an ellipse.



Glossary

Angle of Incidence. The angle between the light ray and normal.
Arc. A section of the circumference of a circle.

Artificial Light. Light from a source other than the sun or moon.
Bird’s-Eye View. An image where the viewer is looking down.
Bisect. Divide into two equal parts.

Center of Vision (CV). Where the viewer is looking. The focal point.
Circumference. The perimeter of a circle.

Cone of Vision. A 60° cone emanating from the viewer’s eye, intersecting
the picture plane, creating a circle around the center of vision. Objects
drawn outside this circle become noticeably distorted.

Congruent. Having the same angles or measurements.

Converging Light. Shadows resulting from an artificial light source.
Converging Lines. Parallel lines that connect to a single vanishing point.
Cross-section. The intersection of a three-dimensional form by a plane.
Cube. A prism with six square sides meeting at a right angle.

Cuboid. A rectangular prism with each face meeting at a right angle.

Cylinder. A three-dimensional form with parallel sides and two circular
ends.

Diameter. A line that passes through the center of a circle with both ends
touching its circumference.

Diminution. The appearance of an object getting smaller as it moves further
away from the viewer.



Elevation View. A side view showing height and depth, or a front view
showing height and width. There is no perspective, no diminution, no
foreshortening.

Eye Level (EL). The distance from the ground to the viewer’s eye. The
horizon line is always at the viewer’s eye level.

Field of Vision. The area that can be seen without the viewer turning their

head.

Five-Point Perspective. A 180° view of the world. The picture plane is half a
hemisphere.

Foreshortening. The apparent reduction in length of an angle due to the
position from which it is viewed.

Four-Point Perspective. A panorama view up to 360°. The picture plane is a
cylinder.

Great Circle. A cross-section of a sphere that creates the largest diameter
possible. The circle intersects the center of the sphere.

Ground Line (GL). Generic: a line drawn on the ground plane. Shadows: the
angle of a shadow cast from a vertical line on a horizontal surface.

Ground Plane. The horizontal surface of the ground.
Hemisphere. Half a sphere.

Horizon Line (HL). The edge of the earth; the line that separates sky from
land.

Hypotenuse. The longest side of a right-angled triangle.
Isosceles Triangle. A triangle where two sides are of equal length.

Linear Perspective. A system using the rules of geometry to depict 3-D
space on a 2-D surface.

Light Angle (LA). The angle of the light ray to the ground plane.

Line of Sight. An imaginary line indicating the direction the viewer is

looking.

Major Axis. The longest distance across an ellipse.



Measuring Point (MP). A point that transfers the distance of a
foreshortened line to a line parallel with the picture plane, creating an
isosceles triangle.

Minor Axis. The axis through the center of the ellipse, 90° to the elliptical
plane.

Natural Light. Light from the sun or moon.

Negative Shadows. When a natural light source is located behind the
viewer.

Normal. A line at right angles to a reflective surface.

One-Point Perspective. Vertical and horizontal dimensions are parallel with
the picture plane. Foreshortened lines converge to the center of vision.

Orthogonal Lines. Lines at right angles.

Orthographic. Representing a three-dimensional form wusing two-
dimensional (plan and elevation) views.

Parallel Light. When a natural light source is 90° to the line of sight.
Peripheral Vision. The visual area outside the cone of vision.
Perpendicular. Two lines intersecting at 90° angles.

Plan View. A top view showing width and depth. There is no perspective,
no diminution, no foreshortening.

Plane. A flat surface.

Picture Plane (PP). A transparent plane between the viewer and the world.
Polygon. A closed plane formed by three or more line segments.

Positive Light. When a natural light source is in front of the viewer.

Prism. A three-dimensional form with two parallel and congruent bases.

Pythagorean Theorem. The square of the hypotenuse is equal to the sum of
the squares of a right-angled triangle’s other two sides.

Radius. The distance from the center of a circle to the circumference.



Reference Point (RP). A point used to move objects forward or backward in
space.

Right Angle. A straight line that is 90° at its point of intersection with
another straight line.

Six-Point Perspective. A 360° view of the world. The picture plane is a
sphere.

Sphere. A three-dimensional form where every point of its surface is an
equal distance from its center.

Station Point (SP). The viewer’s eye.

Three-Point Perspective. No sides of the object are parallel with the picture
plane. The center of vision is above or below the horizon line.

Two-Point Perspective. Vertical dimensions are parallel with the picture
plane. Horizontal dimensions are foreshortened and connect to right and
left vanishing points.

Vanishing Point (VP). A point at infinity where objects disappear.

Worm’s-Eye View. An image where the viewer is looking up.
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Page numbers in italics indicate an illustration

anamorphic perspective 313, 313-15, 315
arc 136, 137
artificial light: shadow components 276, 277-9, 279
three-point shadows 291, 291-2
auxiliary horizon line (AUX. HL) 91, 94
auxiliary measuring point 99, 101
auxiliary measuring point (AUX. MP): inclined cuboids 116, 116

rotating forms 140-1, 140-1
vertical location 121-3, 121-5

auxiliary vanishing point (AUX. VP): falling and rotating forms 136, 138
inclined cuboids 108-9, 109, 114, 114—15

lines, multiplying method 345, 346
azimuthal equidistant 334, 334
azimuthal projections 3314, 332-4

Brunelleschi, Filippo 154

Cartesian coordinate system: axis representation 215
one-point angles 215, 215
x-axis 215, 216-18, 217
y-axis 217, 217-21, 219
centric point 2
circle, dividing methods 347, 347
combining, one and three-point 226, 226
one-point diagram 227, 227-9
rotation of object 233, 233



superimposing diagrams 230-2, 230-2
combining, three-point 243, 244
combining, two and three-point: rotation of object 241, 241-2
superimposing diagrams 236-40, 236-40
two-point box 234, 234-5, 236
cone of vision: definition 5-6, 6
ellipses and distortion 66, 66
one-point perspective diagram 18, 18
outside object and distortion 11, 12, 13
station point (SP) 159, 177
three-point perspective 177, 189, 189
congruent angles 274, 274
converging light see artificial light
curved surfaces 88, 88, 136, 137
reflections 306, 306—10, 308, 311, 312
shadows 269, 269
curvilinear perspective (fish-eye) 15, 1

depth, measuring: Alberti’s method 155, 155
box, rotating form 142, 142
one-point perspective diagram 20, 20-1
perspective combinations 231, 231
plan/elevation view perspective 168, 168
three-point angles 205, 205
two-point perspective 39, 40

distant vanishing point: grid approach 129-31, 129-31
inclines 133, 133
measuring technique 132, 132
plan/elevation view perspective 170, 170-2
protractor, use of 134, 134

distortion: cone of vision 11, 12, 13
ellipses 66, 66
four-point perspective 316
spheres 79, 80

Durer, Albrecht 4, 4, 12

elevation view: complicated inclines 135, 136, 148, 148
definition 8, 8
one-point diagram 155-6, 155-6
one-point inclines 103-4, 104
plan/elevation view perspective 158—62, 158-62




random curves 88, 88
two-point inclines: alternative method 106, 106
ellipses: distortion 66, 66
drawing mistakes 65, 65
eight-point measured 69, 69
eight-point plotted 66, 67-8
eight-point projected 70, 70
ellipse guides 74, 74-5
four-point 65-6, 65-6
horizontal 75, 75
one-point vertical 76, 76
spiral forms 82, 82-5

twelve-point 71, 71-2

twenty-four point 73, 73

two-point vertical 76, 77-8
Eyck, Jan van 15, 15

falling and rotating forms: arc of travel 136, 136-8
axis point and angles 135, 136
bottom box, drawing 139-45, 139-45
middle box, drawing 146, 146
top box, drawing 147, 147

five-point perspective: angled grid 339, 340
components 329-31, 329-31
five-point grids 335-7, 335-9
flattening a sphere, methods 331-4, 332-4
orientation 15, 15

fixed center 1, 2, 4, 4

four-point perspective: components 317, 317
distortion 316
horizontal and vertical dimensions 14, 14, 316, 316
picture plane (PP) 316, 316
rectangular room, drawing process 326, 326-8, 328

inclines 119, 120
gnomonic projection 332, 332




grids: distant vanishing point 129-31, 129-31

ground line (GL) 158-9, 159, 254, 280, 284
ground line measuring point (GLMP) 272, 272, 275, 275

height, measuring: box, rotating form 1434, 143—4
one-point perspective diagram 22, 22
perspective combinations 232, 232
plan/elevation view perspective 169, 169
tapered forms 150-1, 150-1

three-point worm’s-eye view 195, 195-6
two-point perspective 41, 41
history 1-2, 154-5
value 1
horizon line (HL): auxiliary horizon line (AUX. HL) 91, 94
definition 3, 3
one-point perspective diagram 17
relative terms 5, 5

horizontal measuring line (HML) 190, 190

incline, compound 245-9, 245-53
inclined cuboids: one-point perspective 107-10, 107-12, 112

inclined planes: concept realisation 89
distant vanishing point 133, 133

incline geometry: measuring line (ML) 119, 120
measuring point locations 126, 126—8




vertical auxiliary measuring points 121-3, 121-5
intersecting forms 346, 3467

left axis point (LAP) 211, 211

left axis, three-point angles 211, 211-14

left measuring point (LMP) 37, 39, 179, 179

left reference line (LRL) 176, 176-7

left reference point (LRP) 176-7, 177

left station point (LSP) 177-8, 177-8

lengths, dividing methods 342, 342-3

light angle (LA) 254

light angle vanishing point (LAVP): location 279

lines, multiplying methods 344-5, 346

Masaccio 2

measuring line (ML): applications 7
definition 7
one-point perspective diagram 19, 19
three-point angles 209, 209, 213
three-point perspective 190, 190

measuring point (MP): definition 2, 7
incline geometry 126, 126-8
one-point perspective diagram 18, 18

see also auxiliary measuring point

natural light: negative shadows 273-5, 273-5

positive shadows 270-2, 270-2

three-point positive shadows 284-5, 284-5
object: picture plane dynamics 10, 10

plan/elevation view perspective 159, 159

vertical axis, three-point angles 202-5, 202-5

horizontal and vertical dimensions 11-12, 11-12



orthographic projection 333, 333

peripheral vision 5, 6
picture plane (PP): art production 1, 2, 4
definition 4
dynamics 8-9, 9-10
five-point perspective 15, 15
four-point perspective 14, 14, 316, 316
six-point perspective 16, 16
three-point perspective 174, 174
plan/elevation view perspective: diagram components 1589, 158-9
diagram construction 160-2, 160-2
distant vanishing point 170, 170-2
objects not touching picture plane 163-4, 163—4
two-point plan/elevation 1669, 166-9
plan view (PV): definition 8, 8
plan/elevation view perspective 158—62, 158-62

random curves 88, 88
reference lines 176, 176-7
reflections: concave surfaces 308, 309-10
convex surfaces 306, 306-8, 308
inclined surfaces 298, 299-304
laws of 305, 305
one-point perspective 2934, 293-6
spheres 311, 312
two-point perspective 296, 297
right axis point (RAP) 206, 206
right axis, three-point angles 206-10, 206-10

right reference line (RRL) 176, 1767
right reference point (RRP) 176, 177
right station point (RSP) 180, 180-2

components 254



curved surfaces 269, 269
ground line (GL) 254
light angle (LA) 254
natural light 254
negative, natural light 273-5, 273-5
parallel 256, 256
positive, natural light 270-2, 270-2
round and curved objects 263, 263-6
rules and surfaces 255, 2579, 257-62, 261-2
spheres, of and on 267-8, 268

shadows, three-point: artificial light 291, 291-2
light source location 288, 288-90
negative 286, 286—7
parallel, bird’s-eye view 280-1, 281
parallel, worm’s-eye view 282, 282-3
positive 284, 284—5

six-point perspective 16, 16, 341, 341

spheres: distortion 79, 80
drawing using cube 79, 81, 81
flattening, drawing methods 331-4, 332-4
reflections 311, 312
shadows, of and on 267-8, 268

spiral forms: drawing technique 82, 82-5
spiral staircase 86, 867

station point (SP): art production 4
definition 3
horizontal angles 59-60, 59-60
left (LSP) 177-8, 177-8
one-point perspective diagram 17, 17-18
picture plane dynamics 8, 9
plan/elevation view perspective 158-9, 159
right (RSP) 180, 180-2
three-point perspective 177, 1868, 187
two- point perspective 37, 38-9;

stereographic proj ectlon ﬁ, 333

tapered forms: drawing using ellipses 79, 79
tilted 148-53, 148-53

terms: center of vision (CV) 5,5
cone of vision 5-6, 6



elevation view 8, 8
eye level (EL) 3
horizon line (HL) 3, 3
isosceles triangle 2
line of sight 3, 4
measuring line (ML) 7, 7
measuring point (MP) 2, 7
object 10, 10
plan view (PV) 8, 8
station point (SP) 3, 8, 9
vanishing point (VP) 2, 5, 5
three-point angles: axes 197, 197-8
left axis 211, 211-14
right axis 206-10, 206—10
three-point diagrams 222-5, 223-5
three-point perspective: angle of object 2234, 223—4
angle of sight 222, 223
cube, drawing dimensions 191-3, 191-3
cube, worm’s eye view 194, 194—6
diagram components 174, 174—5

orientation 13, 13, 173, 173

three-point combinations 243, 244

two-point combinations 234, 234—42, 236
two-point perspective: box, drawing of 49-52, 49-52

diagram construction 37, 38-9

distant objects 45, 46—7

horizontal and vertical dimensions 12, 12

measuring behind the picture plane 42-5, 43-5

measuring dimensions 3941, 40-1

measuring in front of picture plane 47-8, 47-8

Urbino, Carlo 13

vanishing point (VP): centric point 2



definition 5
distant (off page) solutions 129-34, 129-34
four-point perspective 317, 317

see also auxiliary vanishing point
vertical axis point (VAP) 198, 198
vertical measuring line (VML) 190, 190
vertical measuring point (VMP) 183, 183-5, 193
vertical reference line (VRL) 176, 176-7
vertical reference point (VRP) 176, 177, 193

visual pyramid 1, 2, 4
Vredeman de Vries, Jan 89

width, measuring: Alberti’s method 155, 155
one-point perspective diagram 19, 19
perspective combinations 229, 229
three-point angles 203, 203
worm’s-eye view 194, 194

worm’s-eye view: ground plane, establishing 194-5, 194-6
three-point perspective 13, 13, 173, 173
three-point shadows negative 287
three-point shadows parallel 282, 282-3
three-point shadows positive 285
vanishing points 175
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